The rapid increase in renewable energy in recent and upcoming years necessitates a corresponding expansion in energy storage due to the inherent intermittency of these sources. One promising solution, developed in recent years, is the conversion of excess energy into chemical carriers, which can store energy and release it when needed. Hydrogen (H2) is a suitable energy carrier for this purpose; however, it poses significant challenges related to storage and safety. To address these issues, it is possible to employ H2 vectors, such as ammonia (NH3) and methanol (CH3OH). However, the combustion of ammonia presents several challenges, including high auto-ignition temperature, low laminar flame speeds, NOx emissions, and potential health hazards. A promising strategy is to blend ammonia with methanol, which has been shown to reduce NOx emissions. Studying the combustion of this mixture is therefore highly relevant. In this thesis, the ammonia–methanol mixture is investigated starting from a kinetic level. The individual kinetic models for each fuel were considered: the ammonia mechanism was used without modifications, while the methanol mechanism was updated at its core. The novel aspect of this work lies in the investigation of interactions between ammonia and methanol, which can become particularly significant under certain conditions. The complete kinetic model of the mixture was validated against experimental measurements of ignition delay times, laminar flame speeds, and species profiles in jet-stirred reactors and flow reactors. Sensitivity analyses were subsequently performed to identify the reactions most influential in the combustion process. Overall, the results show that the proposed mechanism is in good agreement with literature data and represents a significant improvement over the initial models. The interaction reactions in the ammonia–methanol pathway play a significant role in determining ignition delay times, particularly at low temperatures, as highlighted by several sensitivity analyses. Finally, the thesis analyzes NOx emissions from NH3/CH3OH mixtures, compared with NH3/H2 mixtures, to highlight trade-offs between combustion properties and emissions. Results show that NOx emissions are generally reduced with ammonia–methanol mixtures, with an optimal balance at 70–80% methanol, ensuring lower NOx at ambient conditions while maintaining favorable combustion properties such as laminar flame speed.
Negli ultimi anni, l’aumento delle energie rinnovabili ha reso sempre più importante sviluppare sistemi di accumulo energetico, visto che queste fonti non producono energia in modo costante. Una soluzione interessante, studiata recentemente, consiste nel trasfor mare l’energia in vettori chimici, che la immagazzinano e la rilasciano quando serve. L’idrogeno (H2) è uno dei vettori più promettenti, ma presenta problemi di sicurezza e di stoccaggio. Per superare queste difficoltà si possono usare vettori derivati dall’idrogeno, come ammoniaca (NH3) e metanolo (CH3OH). La combustione dell’ammoniaca, però, presenta alcune criticità: richiede alte temperature per l’autoaccensione, ha velocità di fiamma laminare ridotte, produce NOx e può essere rischiosa per la salute. Un approccio efficace è miscelare l’ammoniaca con il metanolo, che permette di ridurre le emissioni di NOx senza modificare in modo significativo i motori. Per questo motivo, studiare la combustione di questa miscela è molto rilevante. In questa tesi, il lavoro si è soffermato sullo studio cinetico della miscela ammoniaca–metanolo. I modelli cinetici dei singoli combustibili sono stati presi come base: il meccanismo dell’ammoniaca è rimasto invariato, mentre quello del metanolo è stato aggiornato. La parte nuova del lavoro riguarda le interazioni tra ammoniaca e metanolo, che possono avere effetti importanti in certe condizioni. Il modello cinetico completo della miscela è stato confrontato con dati sperimentali relativi ai tempi di accensione, alle velocità di fiamma laminare e alle concentrazioni delle specie chimiche in reattori a flusso e agitati a getto. Sono state inoltre effettuate analisi di sensibilità per capire quali reazioni hanno maggior impatto sulla combustione. I risultati mostrano che il modello proposto si accorda bene con i dati della letteratura e migliora i modelli precedenti. Le reazioni di interazione nel percorso ammoniaca–metanolo svolgono un ruolo fondamentale nella determinazione dei tempi di ignizione, in particolare a basse temperature, come evidenziato da numerose analisi di sensitività. Infine, è stata condotta un’analisi delle emissioni di NOx delle miscele NH3/CH3OH, con frontandole con quelle delle miscele NH3/H2, per evidenziare possibili compromessi tra prestazioni della combustione ed emissioni. I risultati mostrano che le miscele ammoniaca–metanolo consentono una riduzione generale delle emissioni di NOx, con un equilibrio ottimale per concentrazioni di metanolo del 70–80%, garantendo minori emissioni a temperatura ambiente e al tempo stesso buone proprietà di combustione, come adeguate velocità di fiamma laminare.
Kinetic modeling of the combustion of ammonia-methanol blends as flexible energy carriers
D'AMATO, GIUSEPPE
2024/2025
Abstract
The rapid increase in renewable energy in recent and upcoming years necessitates a corresponding expansion in energy storage due to the inherent intermittency of these sources. One promising solution, developed in recent years, is the conversion of excess energy into chemical carriers, which can store energy and release it when needed. Hydrogen (H2) is a suitable energy carrier for this purpose; however, it poses significant challenges related to storage and safety. To address these issues, it is possible to employ H2 vectors, such as ammonia (NH3) and methanol (CH3OH). However, the combustion of ammonia presents several challenges, including high auto-ignition temperature, low laminar flame speeds, NOx emissions, and potential health hazards. A promising strategy is to blend ammonia with methanol, which has been shown to reduce NOx emissions. Studying the combustion of this mixture is therefore highly relevant. In this thesis, the ammonia–methanol mixture is investigated starting from a kinetic level. The individual kinetic models for each fuel were considered: the ammonia mechanism was used without modifications, while the methanol mechanism was updated at its core. The novel aspect of this work lies in the investigation of interactions between ammonia and methanol, which can become particularly significant under certain conditions. The complete kinetic model of the mixture was validated against experimental measurements of ignition delay times, laminar flame speeds, and species profiles in jet-stirred reactors and flow reactors. Sensitivity analyses were subsequently performed to identify the reactions most influential in the combustion process. Overall, the results show that the proposed mechanism is in good agreement with literature data and represents a significant improvement over the initial models. The interaction reactions in the ammonia–methanol pathway play a significant role in determining ignition delay times, particularly at low temperatures, as highlighted by several sensitivity analyses. Finally, the thesis analyzes NOx emissions from NH3/CH3OH mixtures, compared with NH3/H2 mixtures, to highlight trade-offs between combustion properties and emissions. Results show that NOx emissions are generally reduced with ammonia–methanol mixtures, with an optimal balance at 70–80% methanol, ensuring lower NOx at ambient conditions while maintaining favorable combustion properties such as laminar flame speed.| File | Dimensione | Formato | |
|---|---|---|---|
|
2025_10_D_Amato.pdf
accessibile in internet per tutti
Dimensione
14.35 MB
Formato
Adobe PDF
|
14.35 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/243445