Grapevine diseases such as powdery mildew, downy mildew, and Esca pose a serious threat to viticulture, causing significant yield losses and quality degradation when not detected in time. Traditional diagnosis relies on manual field inspections, which are labor-intensive, subjective, and often too slow to ensure effective management. Recent advances in deep learning offer a powerful alternative, yet models frequently fail to generalize across the diverse conditions found in real-world vineyards. This thesis investigates methods to improve the robustness of grapevine disease detection through the development of multiple YOLOv7-based training pipelines. Novel preprocessing strategies, including patch-based training and histogram equalization, are introduced to enhance localized feature learning and mitigate the effects of variable lighting, backgrounds, and leaf presentations. The proposed models are trained and evaluated on a newly created dataset of grapevine leaves affected by powdery mildew, downy mildew, and Esca, and further tested on external datasets to assess their ability to generalize under domain shifts. Experimental results demonstrate that the combination of patch-based training and targeted preprocessing substantially strengthens model performance across heterogeneous conditions, underscoring the importance of data-centric approaches for reliable AI-driven disease detection in viticulture.
Le malattie della vite, tra cui oidio, peronospora ed Esca, rappresentano una minaccia significativa per la viticoltura, causando gravi perdite di resa e peggioramento della qualità dei prodotti se non identificate tempestivamente. La diagnosi tradizionale si basa su ispezioni visive in campo, attività dispendiose in termini di tempo, soggettive e spesso troppo lente per garantire una gestione efficace. I recenti progressi nel deep learning offrono un’alternativa promettente, ma i modelli esistenti mostrano frequentemente difficoltà nel generalizzare in condizioni reali caratterizzate da elevata variabilità. Questo progetto di tesi esplora strategie per aumentare la robustezza del rilevamento delle malattie della vite attraverso lo sviluppo di diverse pipeline di addestramento basate su YOLOv7. Sono state introdotte nuove tecniche di preprocessing, tra cui il training a patch e l’equalizzazione dell’istogramma, con l’obiettivo di migliorare l’apprendimento di caratteristiche locali e ridurre l’impatto di variazioni di illuminazione, sfondo e presentazione delle foglie. I modelli proposti sono stati addestrati e valutati su un nuovo dataset di foglie di vite affette da oidio, peronospora ed Esca, e successivamente testati su dataset esterni per valutarne la capacità di generalizzare in presenza di cambiamenti di contesto. I risultati sperimentali mostrano che la combinazione di training a patch e preprocessing mirato rafforza significativamente le prestazioni del modello in scenari eterogenei, evidenziando l’importanza di approcci basati sui dati per un rilevamento affidabile delle malattie della vite con l'intelligenza artificiale.
Optimizing object detection models for robust vine leaf disease recognition
MANCUSO, INNOCENZO
2024/2025
Abstract
Grapevine diseases such as powdery mildew, downy mildew, and Esca pose a serious threat to viticulture, causing significant yield losses and quality degradation when not detected in time. Traditional diagnosis relies on manual field inspections, which are labor-intensive, subjective, and often too slow to ensure effective management. Recent advances in deep learning offer a powerful alternative, yet models frequently fail to generalize across the diverse conditions found in real-world vineyards. This thesis investigates methods to improve the robustness of grapevine disease detection through the development of multiple YOLOv7-based training pipelines. Novel preprocessing strategies, including patch-based training and histogram equalization, are introduced to enhance localized feature learning and mitigate the effects of variable lighting, backgrounds, and leaf presentations. The proposed models are trained and evaluated on a newly created dataset of grapevine leaves affected by powdery mildew, downy mildew, and Esca, and further tested on external datasets to assess their ability to generalize under domain shifts. Experimental results demonstrate that the combination of patch-based training and targeted preprocessing substantially strengthens model performance across heterogeneous conditions, underscoring the importance of data-centric approaches for reliable AI-driven disease detection in viticulture.| File | Dimensione | Formato | |
|---|---|---|---|
|
2025_09_Innocenzo_Mancuso_Executive_Summary.pdf
accessibile in internet per tutti
Dimensione
7.67 MB
Formato
Adobe PDF
|
7.67 MB | Adobe PDF | Visualizza/Apri |
|
2025_09_Innocenzo_Mancuso_Thesis.pdf
accessibile in internet per tutti
Dimensione
33.6 MB
Formato
Adobe PDF
|
33.6 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/243509