In the field of quantum photonics, quantum memories represent one of the most important classes of devices. A quantum memory is designed to coherently store photonic qubits and retrieve them on demand after a controlled delay. Such devices are primarily employed as synchronization tools in scenarios where multiple probabilistic quantum processes must be interconnected. They find applications in areas including single-photon sources and quantum optical networks. A promising strategy to enhance the efficiency of protocols involving quantum memories is to embed the memory within an optical resonant cavity, thereby exploiting the so-called impedance-matching condition. With the long-term goal of realizing a solid-state, rare-earth-ion-doped, cavity-enhanced integrated quantum memory, this thesis focuses on the design, fabrication, and optical characterization of a proof-of-concept integrated device implemented in a borosilicate photonic chip, realized using femtosecond laser micromachining as the sole microfabrication platform. Two layouts of this device, referred to as directional coupler resonators, are proposed and experimentally investigated by means of photonic circuits fabricated in glass via laser waveguide writing. The first one is based on a directional coupler in which two ports are coated with thin aluminum layers acting as integrated mirrors. This configuration closely resembles an integrated symmetric Fabry-Perot cavity and, although it does not allow achieving the impedance-matching condition, it provides a useful benchmark for assessing the capabilities of the fabrication technique in realizing this class of devices. The second one is based on a reconfigurable Mach-Zehnder interferometer where three ports are coated with a reflective layer. This design provides richer optical interference physics and makes it possible to achieve the impedance-matching condition, thus opening interesting perspectives in its application to integrated quantum memories development. Both versions of the device have been optimized to operate in the telecom C-band.
Nel campo della fotonica quantistica, le memorie quantistiche sono considerate tra i dispositivi più rilevanti. Una memoria quantistica è progettata per memorizzare in modo coerente qubit fotonici e recuperarli su richiesta dopo un dato intevallo di tempo. Tali dispositivi sono impiegati principalmente come strumenti di sincronizzazione quando più processi quantistici di natura probabilistica devono essere interconnessi. Trovano applicazione in diversi ambiti, tra cui le sorgenti a singolo fotone e le reti ottiche quantistiche. Una strategia promettente per migliorare l’efficienza dei protocolli utlizzati con memorie quantistiche consiste nell’integrare la memoria in una cavità ottica risonante, sfruttando la cosiddetta condizione di impedance-matching. Con l’obiettivo a lungo termine di realizzare una memoria quantistica basata su cristalli drogati con ioni di terre rare e integrata in una cavità ottica, questa tesi si concentra sulla progettazione, fabbricazione e caratterizzazione ottica di un dispositivo integrato proof-of-concept realizzato in un chip fotonico in borosilicato, utilizzando come unica piattaforma di microfabbricazione la scrittura laser a femtosecondi. Due diversi layouts, denominati accoppiatori direzionali risonanti, sono stati proposti e studiati sperimentalmente per mezzo di circuiti fotonici in vetro fabbricati tramite scrittura laser di guide d'onda. Il primo è basato su un accoppiatore direzionale in cui due porte sono rivestite con sottili strati di alluminio che fungono da specchi integrati. Questa configurazione ricorda una cavità Fabry-Perot simmetrica integrata e, sebbene non consenta l’implementazione della condizione di impedance-matching, risulta utlie per valutare le capacità della tecnica di fabbricazione nella realizzazione di questa classe di dispositivi. Il secondo è basato su un interferometro Mach-Zehnder riconfigurabile in cui tre porte sono rivestite con strati riflettenti. Questo design determina un'interferenza ottica più ricca e rende possibile il raggiungimento della condizione di impedance-matching, aprendo così interessanti prospettive per la sua applicazione nello sviluppo di memorie quantistiche integrate. Entrambe le versioni sono state ottimizzate per operare nella telecom C-band.
Directional coupler resonators for an efficient quantum memory in a laser-written photonic chip
Scaietti, Matteo
2024/2025
Abstract
In the field of quantum photonics, quantum memories represent one of the most important classes of devices. A quantum memory is designed to coherently store photonic qubits and retrieve them on demand after a controlled delay. Such devices are primarily employed as synchronization tools in scenarios where multiple probabilistic quantum processes must be interconnected. They find applications in areas including single-photon sources and quantum optical networks. A promising strategy to enhance the efficiency of protocols involving quantum memories is to embed the memory within an optical resonant cavity, thereby exploiting the so-called impedance-matching condition. With the long-term goal of realizing a solid-state, rare-earth-ion-doped, cavity-enhanced integrated quantum memory, this thesis focuses on the design, fabrication, and optical characterization of a proof-of-concept integrated device implemented in a borosilicate photonic chip, realized using femtosecond laser micromachining as the sole microfabrication platform. Two layouts of this device, referred to as directional coupler resonators, are proposed and experimentally investigated by means of photonic circuits fabricated in glass via laser waveguide writing. The first one is based on a directional coupler in which two ports are coated with thin aluminum layers acting as integrated mirrors. This configuration closely resembles an integrated symmetric Fabry-Perot cavity and, although it does not allow achieving the impedance-matching condition, it provides a useful benchmark for assessing the capabilities of the fabrication technique in realizing this class of devices. The second one is based on a reconfigurable Mach-Zehnder interferometer where three ports are coated with a reflective layer. This design provides richer optical interference physics and makes it possible to achieve the impedance-matching condition, thus opening interesting perspectives in its application to integrated quantum memories development. Both versions of the device have been optimized to operate in the telecom C-band.| File | Dimensione | Formato | |
|---|---|---|---|
|
2025_10_Scaietti_Executive_Summary_02.pdf
accessibile in internet per tutti
Descrizione: Executive Summary
Dimensione
628.34 kB
Formato
Adobe PDF
|
628.34 kB | Adobe PDF | Visualizza/Apri |
|
2025_10_Scaietti_Tesi_01.pdf
accessibile in internet per tutti
Descrizione: Master Thesis
Dimensione
13.85 MB
Formato
Adobe PDF
|
13.85 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/243519