The treatment of acid gases such as hydrogen sulfide (H2S) and carbon dioxide (CO2) remains a critical challenge for the refinery industry, where conventional Claus units are widely employed to ensure environmental compliance through sulfur recovery. While effective, this approach is essentially linear, converting H2S into liquid sulfur without further valorising this refinery by-product. This thesis investigates the Acid Gas to Syngas (AG2STM) technology as a promising alternative, coupling acid gas abatement with the coproduction of elemental sulfur and syngas. Process simulations were performed in Aspen HYSYS® v11, supported by a validated kinetic scheme, to assess technical performance, energy integration, and economic viability. A modified AG2STM configuration based on innovative quenching was also developed to overcome the conventional Waste Heat Boiler (WHB) limitations. The results highlight a clear contrast between the two routes: the Claus process secures an higher single-pass H2S conversion (96.3%) and sulfur recovery efficiency (47.9%), but remains structurally unprofitable and energy intensive. In comparison, AG2STM achieves similar sulfur production ( ≈ 67–69 kmol/h) through the internal recycle of unconverted species, while at the same time generating a nitrogen-free syngas stream and lower energy consumption. Within AG2STM, the adoption of a quench configuration further enhances performance, improving syngas preservation and purity. Overall, the study demonstrates that AG2STM can shift acid gas treatment from a compliance-driven operation to an integrated valorization pathway, combining waste reduction with the production of valuable intermediates. The quench variant emerges as a particularly promising route for future development.
Il trattamento dei gas acidi, come l’idrogeno solforato (H2S) e l’anidride carbonica (CO2), rappresenta ancora oggi una sfida cruciale per l’industria della raffinazione, dove le unità Claus convenzionali sono ampiamente utilizzate per garantire la conformità ambientale attraverso il recupero dello zolfo. Pur essendo efficace, questo approccio rimane essenzialmente lineare, in quanto converte l’H2S in zolfo liquido senza valorizzare ulteriormente questo sottoprodotto di raffineria. La presente tesi esplora la tecnologia Acid Gas to Syngas (AG2STM) come alternativa promettente, combinando l’abbattimento dei gas acidi con la coproduzione di zolfo elementare e syngas. Sono state condotte simulazioni di processo in Aspen HYSYS® v11, supportate da uno schema cinetico validato, al fine di valutarne le prestazioni tecniche, l’integrazione energetica e la fattibilità economica. È stata inoltre sviluppata una configurazione modificata di AG2STM, basata su un innovativo sistema di quench, per superare le limitazioni del tradizionale Waste Heat Boiler (WHB). I risultati evidenziano un netto contrasto tra le due vie: il processo Claus garantisce una conversione di H2S a passaggio singolo più elevata (96,3%) e una maggiore efficienza di recupero dello zolfo (47,9%), ma si conferma strutturalmente non redditizio e ad alta intensità energetica. Al contrario, AG2STM ottiene una produzione di zolfo analoga (,≈,67–69 kmol/h) grazie al riciclo interno delle specie non convertite, generando al contempo una corrente di syngas priva di azoto e con un consumo energetico inferiore. All’interno di AG2STM, l’adozione di una configurazione con quench incrementa ulteriormente le prestazioni, migliorando la conservazione e la purezza del syngas. Nel complesso, lo studio dimostra come AG2STM possa trasformare il trattamento dei gas acidi da un’operazione guidata unicamente dalla conformità normativa a un percorso integrato di valorizzazione, che combina riduzione dei rifiuti e produzione di intermedi di valore. La variante con quench si configura come una delle opzioni più promettenti per futuri sviluppi.
Simulation-based comparative analysis of acid gas to syngas technology (AG2S-TM) and alternative routes
CASTIGLIONI, FEDERICA MARIA;Longo, Simona
2024/2025
Abstract
The treatment of acid gases such as hydrogen sulfide (H2S) and carbon dioxide (CO2) remains a critical challenge for the refinery industry, where conventional Claus units are widely employed to ensure environmental compliance through sulfur recovery. While effective, this approach is essentially linear, converting H2S into liquid sulfur without further valorising this refinery by-product. This thesis investigates the Acid Gas to Syngas (AG2STM) technology as a promising alternative, coupling acid gas abatement with the coproduction of elemental sulfur and syngas. Process simulations were performed in Aspen HYSYS® v11, supported by a validated kinetic scheme, to assess technical performance, energy integration, and economic viability. A modified AG2STM configuration based on innovative quenching was also developed to overcome the conventional Waste Heat Boiler (WHB) limitations. The results highlight a clear contrast between the two routes: the Claus process secures an higher single-pass H2S conversion (96.3%) and sulfur recovery efficiency (47.9%), but remains structurally unprofitable and energy intensive. In comparison, AG2STM achieves similar sulfur production ( ≈ 67–69 kmol/h) through the internal recycle of unconverted species, while at the same time generating a nitrogen-free syngas stream and lower energy consumption. Within AG2STM, the adoption of a quench configuration further enhances performance, improving syngas preservation and purity. Overall, the study demonstrates that AG2STM can shift acid gas treatment from a compliance-driven operation to an integrated valorization pathway, combining waste reduction with the production of valuable intermediates. The quench variant emerges as a particularly promising route for future development.| File | Dimensione | Formato | |
|---|---|---|---|
|
Tesi_CastiglioniLongo.pdf
non accessibile
Dimensione
3.91 MB
Formato
Adobe PDF
|
3.91 MB | Adobe PDF | Visualizza/Apri |
|
Executive_Summary_CastiglioniLongo.pdf
non accessibile
Dimensione
545.74 kB
Formato
Adobe PDF
|
545.74 kB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/243550