The urgent need to mitigate climate change is accelerating the transi- tion toward a low-carbon economy. To achieve net-zero greenhouse gases emissions by 2050, in alignment with the European Green Deal, hydrogen (H2) is emerg- ing as a key energy carrier. Among the available production routes, methane pyrolysis, which produces hydrogen and solid carbon without direct CO2 emis- sions, presents a promising alternative to carbon-intensive steam methane reform- ing (SMR) and energy-intensive water electrolysis. This study explores advanced methane pyrolysis technologies powered by renewable energy, conducting a com- parative techno-economic analysis (TEA) of three configurations: plasma methane pyrolysis, molten salt integrated with a heliostat solar field, and distributed electri- fied heating approach. The methodology included mass and energy balances, effi- ciency calculations, and an assessment of the Levelized Cost of Hydrogen (LCOH), with sensitivity analyses on electricity price, carbon product value, and solar avail- ability. Results indicate a performance hierarchy, primarily driven by process effi- ciency. Distributed electrified heating technology was the most efficient (89.77%), with the lowest break-even hydrogen price and strong resistance to energy cost fluctuations. The molten salt process showed intermediate performance (69.08%), while plasma pyrolysis exhibited the lowest efficiency (52.88%) and high sensitiv- ity to electricity prices. Break-even analysis demonstrated that distributed heating and molten salt can compete with SMR coupled with carbon capture and storage (CCS) under favourable carbon market conditions. Case studies in Italy, Norway, and Saudi Arabia highlighted the strong influence of local electricity costs and so- lar resources. The carbon footprint of each technology is ultimately determined by the carbon intensity of its energy supply, underscoring that full decarbonization requires renewable power. Overall, distributed electrified heating emerges as the most viable technology for scaling turquoise hydrogen production, while molten salt with heliostat solar field is competitive in sun-rich regions, and plasma pyrol- ysis remains promising but requires further research to overcome its high capital costs and energy intensity.
L'urgente necessità di mitigare il cambiamento climatico sta accelerando la transizione verso un'economia a basse emissioni di carbonio. Per raggiungere zero emissioni nette di gas serra entro il 2050, in linea con l'European Green Deal, l'idrogeno (H\textsubscript{2}) si afferma come un vettore energetico promettente. La pirolisi del metano, che produce idrogeno e carbonio solido senza emissioni dirette di CO\textsubscript{2}, rappresenta una valida alternativa ai tradizionali processi di produzione di idrogeno, come lo steam methane reforming (SMR) e l'elettrolisi dell'acqua. Questo studio esplora le tecnologie avanzate di pirolisi del metano alimentate da energie rinnovabili. È stata condotta un'analisi tecnico-economica comparativa (TEA) di tre configurazioni: pirolisi al plasma, pirolisi in sale fuso integrata con un campo di eliostati solari, e un processo con riscaldamento elettrificato distribuito. La metodologia ha incluso bilanci di massa ed energia, calcolo dell'efficienza e una valutazione del LCOH, con analisi di sensibilità sul prezzo dell'elettricità, valore del carbonio e disponibilità solare. I risultati mostrano una gerarchia di performance, guidata principalmente dall'efficienza del processo. La tecnologia con riscaldamento elettrificato distribuito si è rivelata la più efficiente (89.77\%) con prezzo di break-even dell'idrogeno minore e buona resistenza alle fluttuazioni dei costi energetici. La pirolissi in sale fuso ha mostrato prestazioni intermedie (69.08\%), mentre la pirolisi al plasma ha evidenziato una minore efficienza (52.88\%), e forte sensibilità al prezzo dell'elettricità. Analisi di break-even indicano che, sia il processo a riscaldamento distribuito che quello in sale fuso possono competere con SMR+CCS in condizioni favorevoli del mercato del carbonio. Casi studio in Italia, Norvegia e Arabia Saudita evidenziano la dipendenza dai costi locali dell'elettricità e dalle risorse solari. Il carbon footprint è determinato dall'intensità carbonica dell'energia, sottolineando la necessità di fonti rinnovabili. Nel complesso, il riscaldamento elettrificato distribuito emerge come la soluzione più scalabile a livello industriale, la pirolissi in sale fuso è promettente in regioni soleggiate, mentre la pirolissi al plasma resta promettente ma richiede ulteriori studi per ridurre costi e intensità energetica.
Techno-economic analysis of methane pyrolysis for turquoise hydrogen production
FIORENTINO, MARIATERESA
2024/2025
Abstract
The urgent need to mitigate climate change is accelerating the transi- tion toward a low-carbon economy. To achieve net-zero greenhouse gases emissions by 2050, in alignment with the European Green Deal, hydrogen (H2) is emerg- ing as a key energy carrier. Among the available production routes, methane pyrolysis, which produces hydrogen and solid carbon without direct CO2 emis- sions, presents a promising alternative to carbon-intensive steam methane reform- ing (SMR) and energy-intensive water electrolysis. This study explores advanced methane pyrolysis technologies powered by renewable energy, conducting a com- parative techno-economic analysis (TEA) of three configurations: plasma methane pyrolysis, molten salt integrated with a heliostat solar field, and distributed electri- fied heating approach. The methodology included mass and energy balances, effi- ciency calculations, and an assessment of the Levelized Cost of Hydrogen (LCOH), with sensitivity analyses on electricity price, carbon product value, and solar avail- ability. Results indicate a performance hierarchy, primarily driven by process effi- ciency. Distributed electrified heating technology was the most efficient (89.77%), with the lowest break-even hydrogen price and strong resistance to energy cost fluctuations. The molten salt process showed intermediate performance (69.08%), while plasma pyrolysis exhibited the lowest efficiency (52.88%) and high sensitiv- ity to electricity prices. Break-even analysis demonstrated that distributed heating and molten salt can compete with SMR coupled with carbon capture and storage (CCS) under favourable carbon market conditions. Case studies in Italy, Norway, and Saudi Arabia highlighted the strong influence of local electricity costs and so- lar resources. The carbon footprint of each technology is ultimately determined by the carbon intensity of its energy supply, underscoring that full decarbonization requires renewable power. Overall, distributed electrified heating emerges as the most viable technology for scaling turquoise hydrogen production, while molten salt with heliostat solar field is competitive in sun-rich regions, and plasma pyrol- ysis remains promising but requires further research to overcome its high capital costs and energy intensity.| File | Dimensione | Formato | |
|---|---|---|---|
|
2025_10_Fiorentino_Tesi_01.pdf
accessibile in internet per tutti a partire dal 29/09/2026
Descrizione: Testo tesi
Dimensione
3.54 MB
Formato
Adobe PDF
|
3.54 MB | Adobe PDF | Visualizza/Apri |
|
2025_10_Fiorentino_ExecutiveSummary_02.pdf
accessibile in internet per tutti
Descrizione: Testo Executive Summary
Dimensione
701.7 kB
Formato
Adobe PDF
|
701.7 kB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/243590