This thesis stems from the need to understand how digital technologies are transforming supply chain planning and what effects they have on operational performance along pro cesses ranging from demand forecasting to transportation management. The investigation combines a critical literature review with empirical research that combines a questionnaire with companies and interviews with managers, thus capturing both the theoretical horizon and concrete practices. The evidence reveals a picture of uneven maturity. Cloud Computing represents the enabling infrastructure upon which analytical applications are grafted; Artificial Intelligence and the Internet of Things show growing but patchy adoption; Digital Twins and Blockchain remain largely confined to specific use cases. When adoption is effective, the impacts are evident in forecast accuracy, end-to-end visibility, exception management, and lead time stability, but they are highly dependent on data quality, the integration of planning and execution, and clear governance of decision-making processes. The thesis offers operational recommendations for sequencing investments: consolidating integration and data governance prerequisites, scaling technologies closer to structured processes, and maintaining an experimental approach where the ecosystem is not yet mature. This contribution represents the transition from asking what to adopt to understanding why and under what conditions adoption generates value, offering insights for future developments and acknowledging the limitations associated with the empirical scope and the self-declared nature of data.
La tesi nasce dall’esigenza di comprendere come le tecnologie digitali stiano trasformando la pianificazione della supply chain e quali effetti producano sulle prestazioni operative lungo i processi che vanno dalla previsione della domanda alla gestione dei trasporti. L’indagine intreccia una rassegna critica della letteratura con una ricerca empirica che combina un questionario a imprese e interviste a figure manageriali, così da cogliere sia l’orizzonte teorico sia le pratiche concrete. Dalle evidenze emerge un quadro di maturità disomogenea. Il Cloud Computing rappresenta l’infrastruttura abilitante su cui si innestano applicazioni analitiche; l’Intelligenza Artificiale e l’Internet of Things mostrano una diffusione in crescita ma a macchia di leopardo; i Digital Twin e la Blockchain restano per lo più confinati a casi d’uso specifici. Quando l’adozione è effettiva, gli impatti si manifestano su accuratezza previsiva, visibilità end-to-end, gestione delle eccezioni e stabilità dei lead time, ma risultano fortemente dipendenti dalla qualità dei dati, dall’integrazione tra pianificazione ed esecuzione e da una governance chiara dei processi decisionali. La tesi propone indicazioni operative per sequenziare gli investimenti: consolidare i prerequisiti di integrazione e data governance, scalare le tecnologie più vicine ai processi strutturati e mantenere un approccio sperimentale dove l’ecosistema non è ancora maturo. Il contributo si colloca nel passaggio dal chiedersi che cosa adottare al comprendere perché e a quali condizioni l’adozione generi valore, offrendo spunti per sviluppi futuri e riconoscendo i limiti legati al perimetro empirico e alla natura auto-dichiarata dei dati.
Digital transformation in supply chain: maturity and operational impact
DE GAETANO, MICHELE;Di STEFANO, FEDERICO
2024/2025
Abstract
This thesis stems from the need to understand how digital technologies are transforming supply chain planning and what effects they have on operational performance along pro cesses ranging from demand forecasting to transportation management. The investigation combines a critical literature review with empirical research that combines a questionnaire with companies and interviews with managers, thus capturing both the theoretical horizon and concrete practices. The evidence reveals a picture of uneven maturity. Cloud Computing represents the enabling infrastructure upon which analytical applications are grafted; Artificial Intelligence and the Internet of Things show growing but patchy adoption; Digital Twins and Blockchain remain largely confined to specific use cases. When adoption is effective, the impacts are evident in forecast accuracy, end-to-end visibility, exception management, and lead time stability, but they are highly dependent on data quality, the integration of planning and execution, and clear governance of decision-making processes. The thesis offers operational recommendations for sequencing investments: consolidating integration and data governance prerequisites, scaling technologies closer to structured processes, and maintaining an experimental approach where the ecosystem is not yet mature. This contribution represents the transition from asking what to adopt to understanding why and under what conditions adoption generates value, offering insights for future developments and acknowledging the limitations associated with the empirical scope and the self-declared nature of data.| File | Dimensione | Formato | |
|---|---|---|---|
|
2025_10_De Gaetano_Di Stefano_01.pdf
non accessibile
Dimensione
4.19 MB
Formato
Adobe PDF
|
4.19 MB | Adobe PDF | Visualizza/Apri |
|
2025_10_De Gaetano_Di Stefano_Executive Summary_02.pdf
non accessibile
Dimensione
873.75 kB
Formato
Adobe PDF
|
873.75 kB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/243604