The transition towards a sustainable energy framework necessitates new methods for producing green fuels from renewable resources. This thesis investigates the production of methanol-grade syngas from biogas through the integration of high-temperature solid oxide electrolysis (SOEC) with advanced reforming technologies. The primary objective is to develop and validate a robust SOEC model and utilize it to comparatively assess the performance of three novel, integrated process configurations designed for outer autothermal electrification. A zero-dimensional (0D), steady-state electrochemical model of an SOEC was developed in MATLAB®, accounting for electrochemical kinetics, ohmic losses, and chemical equilibria, including the Reverse Water-Gas Shift (RWGS) reaction. The model was validated against diverse experimental data, demonstrating high accuracy in predicting both current-voltage (I-V) characteristics (Mean Absolute Error < 15 mV; R² > 0.98) and outlet syngas compositions. The validated model was then implemented as a custom CAPE-OPEN unit operation within the Aspen HYSYS® process simulator. Three distinct process flowsheets were simulated and evaluated using a set of Key Performance Indicators (KPIs): (i) an autothermal reformer coupled with an SOEC (ATR+SOEC), (ii) an integrated oxy-steam combustion chamber and RWGS reactor (AURGAS®), and (iii) an oxy-combustion process with co-electrolysis in the SOEC (Oxycomb+Co-SOEC). The comparative analysis revealed the ATR+SOEC configuration to be the most promising pathway. It achieved the highest Global Methanol Yield (1.171 kg_MeOH/kg_Biogas) and the highest overall Process Efficiency (84.5%), while demonstrating a Carbon Reduction Potential of 100% with zero direct CO₂ emissions. The AURGAS® process was identified as a strong alternative, with high efficiency (75.4%) and carbon utilization (92.0%). The Oxycomb+Co-SOEC configuration was found to be unfavorable, exhibiting low efficiency (11.5%) and high CO₂ emissions (7.99 kg_CO₂/kg_MeOH). This study concludes that the integration of SOEC technology with autothermal biogas reforming represents a highly efficient and environmentally sound route for green syngas production. The developed multi-scale simulation framework serves as a valuable tool for the design and optimization of such advanced electrified processes, contributing to the decarbonization of the chemical industry.
La transizione verso un quadro energetico sostenibile richiede nuovi metodi per la produzione di combustibili verdi a partire da risorse rinnovabili. Questa tesi indaga la produzione di syngas di qualità metanolo dal biogas attraverso l'integrazione dell'elettrolisi ad alta temperatura con celle a ossidi solidi (SOEC) e tecnologie avanzate di reforming. L'obiettivo principale è sviluppare e validare un modello SOEC robusto e utilizzarlo per valutare comparativamente le prestazioni di tre nuove configurazioni di processo integrate, progettate per l'elettrificazione autotermica esterna. È stato sviluppato in MATLAB® un modello elettrochimico a zero dimensioni (0D) e in regime stazionario di una SOEC, che tiene conto della cinetica elettrochimica, delle perdite ohmiche e degli equilibri chimici, inclusa la reazione di Reverse Water-Gas Shift (RWGS). Il modello è stato validato confrontandolo con diversi dati sperimentali, dimostrando un'elevata accuratezza nella previsione sia delle caratteristiche corrente-tensione (I-V) (Errore Assoluto Medio < 15 mV; R² > 0.98), sia delle composizioni di syngas in uscita. Il modello validato è stato successivamente implementato come operazione unitaria personalizzata CAPE-OPEN all'interno del simulatore di processo Aspen HYSYS®. Sono stati simulati e valutati tre differenti schemi di processo utilizzando un insieme di Key Performance Indicators (KPI): (i) un reformer autotermico accoppiato a una SOEC (ATR+SOEC), (ii) una camera di combustione integrata ossi-vapore con reattore RWGS (AURGAS®), e (iii) un processo di ossi-combustione con co-elettrolisi in SOEC (Oxycomb+Co-SOEC). L'analisi comparativa ha evidenziato la configurazione ATR+SOEC come la più promettente. Essa ha raggiunto la massima resa globale in metanolo (1,171 kg_MeOH/kg_Biogas) e la più alta efficienza complessiva del processo (84,5%), mostrando al contempo un Potenziale di Riduzione del Carbonio del 100% con emissioni dirette di CO₂ pari a zero. Il processo AURGAS® è stato identificato come una valida alternativa, con elevata efficienza (75,4%) e utilizzo del carbonio (92,0%). La configurazione Oxycomb+Co-SOEC è risultata sfavorevole, mostrando una bassa efficienza (11,5%) ed elevate emissioni di CO₂ (7,99 kg_CO₂/kg_MeOH). Questo studio conclude che l'integrazione della tecnologia SOEC con il reforming autotermico del biogas rappresenta una via altamente efficiente e sostenibile dal punto di vista ambientale per la produzione di syngas verde. Il framework di simulazione multi-scala sviluppato costituisce uno strumento prezioso per la progettazione e l'ottimizzazione di tali processi elettrificati avanzati, contribuendo alla decarbonizzazione dell'industria chimica.
Green syngas production from biogas outer autothermal electrification
PLAZAS BALLEN, LUIS EDUARDO
2024/2025
Abstract
The transition towards a sustainable energy framework necessitates new methods for producing green fuels from renewable resources. This thesis investigates the production of methanol-grade syngas from biogas through the integration of high-temperature solid oxide electrolysis (SOEC) with advanced reforming technologies. The primary objective is to develop and validate a robust SOEC model and utilize it to comparatively assess the performance of three novel, integrated process configurations designed for outer autothermal electrification. A zero-dimensional (0D), steady-state electrochemical model of an SOEC was developed in MATLAB®, accounting for electrochemical kinetics, ohmic losses, and chemical equilibria, including the Reverse Water-Gas Shift (RWGS) reaction. The model was validated against diverse experimental data, demonstrating high accuracy in predicting both current-voltage (I-V) characteristics (Mean Absolute Error < 15 mV; R² > 0.98) and outlet syngas compositions. The validated model was then implemented as a custom CAPE-OPEN unit operation within the Aspen HYSYS® process simulator. Three distinct process flowsheets were simulated and evaluated using a set of Key Performance Indicators (KPIs): (i) an autothermal reformer coupled with an SOEC (ATR+SOEC), (ii) an integrated oxy-steam combustion chamber and RWGS reactor (AURGAS®), and (iii) an oxy-combustion process with co-electrolysis in the SOEC (Oxycomb+Co-SOEC). The comparative analysis revealed the ATR+SOEC configuration to be the most promising pathway. It achieved the highest Global Methanol Yield (1.171 kg_MeOH/kg_Biogas) and the highest overall Process Efficiency (84.5%), while demonstrating a Carbon Reduction Potential of 100% with zero direct CO₂ emissions. The AURGAS® process was identified as a strong alternative, with high efficiency (75.4%) and carbon utilization (92.0%). The Oxycomb+Co-SOEC configuration was found to be unfavorable, exhibiting low efficiency (11.5%) and high CO₂ emissions (7.99 kg_CO₂/kg_MeOH). This study concludes that the integration of SOEC technology with autothermal biogas reforming represents a highly efficient and environmentally sound route for green syngas production. The developed multi-scale simulation framework serves as a valuable tool for the design and optimization of such advanced electrified processes, contributing to the decarbonization of the chemical industry.| File | Dimensione | Formato | |
|---|---|---|---|
|
2025_10_Plazas-Ballen_Executive Summary_01.pdf
accessibile in internet solo dagli utenti autorizzati
Dimensione
924.9 kB
Formato
Adobe PDF
|
924.9 kB | Adobe PDF | Visualizza/Apri |
|
2025_10_Plazas-Ballen_Thesis_01.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: thesis text
Dimensione
2.28 MB
Formato
Adobe PDF
|
2.28 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/243607