This thesis investigated the design of a bifunctional catalyst for the chemical upcycling of plastics into fuel, focussing specifically on the conversion of low-density polyethylene (LDPE), a particularly challenging plastic to recycle, into aviation-fuel-range hydrocarbons. The work focused on catalytic hydroconversion, a promising route that integrates hydrogenolysis and acid-catalysed cracking, to convert polyolefins into liquid hydrocarbons under mild conditions. A mesoporous ZSM-5 zeolite provides accessible Brønsted acid sites for isomerisation and β-scission, while nickel (Ni) nanoparticles serve as hydrogenation and hydrogenolysis agents. This study employed a stepwise approach to isolate and understand the individual roles of the metal and acid components in order to tailor their optimal proportion to yield targeted branched liquid hydrocarbons. A set of experiments was performed with different proportions of a mechanical mixture of mesoporous H-ZSM-5 and Ni/SiO2 (10 wt%) in order to map the optimum metal-to-acid ratio. The catalytic performance showed that a metal-to-acid ratio of 0.25 delivered the most desirable liquid quality, with 62 wt% branched hydrocarbons and reasonable conversion (≈ 77 %). Hence, the optimum proportion likely corresponds to a nickel loading of 2.5 wt%. Thus, the bifunctional catalysts were prepared by incipient wetness impregnation (IWI) to enhance site synergy and target this loading. Additionally, the effect of nickel dispersion was assessed by contrasting catalysts prepared with and without the use of a chelating agent, which influences metal dispersion and particle size. Integrating catalytic functions increased conversion from 77% to 84 %, doubled liquid yield (0.241 g to 0.489 g) and, additionally, suppressed aromatics to roughly 1 wt%. However, a concomitant drop in branching from 62 wt% to 43 wt% was also observed, consistent with faster interception and hydrogenation of olefinic intermediates at short metal–acid distances. It was also observed that smaller Ni particles yield more branched hydrocarbons (43 wt% v. 30 wt% for slightly larger particles), but suppressed general liquid yield (0.489 g v. 0.687 g), at similar overall conversions (circa 84–89 %). A 1 wt% Pt/H-ZSM-5 benchmark achieved approximately 86% conversion with about 52 wt% liquids and 41 wt% branching in the liquid phase, providing a high-performance reference. These findings show that selectivity for branched liquid hydrocarbons can be shifted by fine-tuning the synergy and availability of metallic and acid sites.
Questa tesi ha investigato la progettazione di un catalizzatore bifunzionale per l’upcycling chimico delle plastiche in combustibile, concentrandosi specificamente sulla conversione del polietilene a bassa densità (LDPE), una plastica particolarmente difficile da riciclare, in idrocarburi nell’intervallo del carburante per aviazione. Il lavoro si è focalizzato sull’idroconversione catalitica, una via promettente che integra idrogenolisi e cracking acido-catalizzato, per convertire i poliolefine in idrocarburi liquidi in condizioni miti. Una zeolite ZSM-5 mesoporosa fornisce siti acidi di Brønsted accessibili per l’isomerizzazione e la scissione β, mentre nanoparticelle di nichel (Ni) fungono da agenti di idrogenazione e idrogenolisi. Questo studio ha impiegato un approccio per fasi per isolare e comprendere i ruoli individuali delle componenti metallica e acida, al fine di modulare la loro proporzione ottimale e ottenere idrocarburi liquidi ramificati mirati. È stato eseguito un insieme di esperimenti con diverse proporzioni di una miscela meccanica di H-ZSM-5 mesoporosa e Ni/SiO2 (10 wt%) per mappare il rapporto metallo/acido ottimale. Le prestazioni catalitiche hanno mostrato che un rapporto metallo-acido di 0.25 ha fornito la qualità del liquido più desiderabile, con 62 wt% di idrocarburi ramificati e una conversione ragionevole (≈ 77 %). Pertanto, la proporzione ottimale corrisponde verosimilmente a un carico di nichel del 2.5 wt%. I catalizzatori bifunzionali sono stati quindi preparati mediante impregnazione a umidità incipiente (IWI) per aumentare la sinergia tra i siti e raggiungere tale carico. Inoltre, è stato valutato l’effetto della dispersione del nichel confrontando catalizzatori preparati con e senza l’impiego di un agente chelante, che influenza la dispersione del metallo e la dimensione delle particelle. L’integrazione delle funzioni catalitiche ha aumentato la conversione dal 77% all’ 84 %, ha raddoppiato la resa in liquidi (da 0.241 g a 0.489 g) e, inoltre, ha soppresso gli aromatici fino a circa 1 wt%. Tuttavia, si è osservata anche una concomitante diminuzione della ramificazione dal 62 wt% al 43 wt%, coerente con una più rapida intercettazione e idrogenazione degli intermedi olefinici a brevi distanze metallo–acido. Si è inoltre visto che particelle di Ni più piccole producono una quota maggiore di idrocarburi ramificati (43 wt% rispetto a 30 wt% per particelle leggermente più grandi), ma riducono la resa complessiva in liquidi (0.489 g rispetto a 0.687 g), a conversioni complessive simili (circa 84–89 %). Un benchmark a 1 wt% Pt/H-ZSM-5 ha raggiunto circa l’ 86% di conversione con circa il 52 wt% di liquidi e il 41 wt% di ramificazione nella fase liquida, fornendo un riferimento ad alte prestazioni. Questi risultati mostrano che la selettività verso idrocarburi liquidi ramificati può essere modulata regolando finemente la sinergia e la disponibilità dei siti metallici e acidi.
Tailoring of a bifunctional catalyst for the conversion of polyolefins
COELHO MARTINS JUNIOR, PAULO ROBERTO
2024/2025
Abstract
This thesis investigated the design of a bifunctional catalyst for the chemical upcycling of plastics into fuel, focussing specifically on the conversion of low-density polyethylene (LDPE), a particularly challenging plastic to recycle, into aviation-fuel-range hydrocarbons. The work focused on catalytic hydroconversion, a promising route that integrates hydrogenolysis and acid-catalysed cracking, to convert polyolefins into liquid hydrocarbons under mild conditions. A mesoporous ZSM-5 zeolite provides accessible Brønsted acid sites for isomerisation and β-scission, while nickel (Ni) nanoparticles serve as hydrogenation and hydrogenolysis agents. This study employed a stepwise approach to isolate and understand the individual roles of the metal and acid components in order to tailor their optimal proportion to yield targeted branched liquid hydrocarbons. A set of experiments was performed with different proportions of a mechanical mixture of mesoporous H-ZSM-5 and Ni/SiO2 (10 wt%) in order to map the optimum metal-to-acid ratio. The catalytic performance showed that a metal-to-acid ratio of 0.25 delivered the most desirable liquid quality, with 62 wt% branched hydrocarbons and reasonable conversion (≈ 77 %). Hence, the optimum proportion likely corresponds to a nickel loading of 2.5 wt%. Thus, the bifunctional catalysts were prepared by incipient wetness impregnation (IWI) to enhance site synergy and target this loading. Additionally, the effect of nickel dispersion was assessed by contrasting catalysts prepared with and without the use of a chelating agent, which influences metal dispersion and particle size. Integrating catalytic functions increased conversion from 77% to 84 %, doubled liquid yield (0.241 g to 0.489 g) and, additionally, suppressed aromatics to roughly 1 wt%. However, a concomitant drop in branching from 62 wt% to 43 wt% was also observed, consistent with faster interception and hydrogenation of olefinic intermediates at short metal–acid distances. It was also observed that smaller Ni particles yield more branched hydrocarbons (43 wt% v. 30 wt% for slightly larger particles), but suppressed general liquid yield (0.489 g v. 0.687 g), at similar overall conversions (circa 84–89 %). A 1 wt% Pt/H-ZSM-5 benchmark achieved approximately 86% conversion with about 52 wt% liquids and 41 wt% branching in the liquid phase, providing a high-performance reference. These findings show that selectivity for branched liquid hydrocarbons can be shifted by fine-tuning the synergy and availability of metallic and acid sites.| File | Dimensione | Formato | |
|---|---|---|---|
|
2025_10_Coelho Martins Junior_Thesis.pdf
accessibile in internet per tutti
Descrizione: Thesis after required corrections
Dimensione
10.54 MB
Formato
Adobe PDF
|
10.54 MB | Adobe PDF | Visualizza/Apri |
|
2025_10_Coelho Martins Junior_Executive Summary.pdf
accessibile in internet per tutti
Descrizione: Executive summary after required corrections
Dimensione
1.55 MB
Formato
Adobe PDF
|
1.55 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/243626