Decarbonizing industrial process heat is a key challenge for achieving climate neutrality, as most demand is currently met with fossil fuels. High-temperature heat pumps (HTHPs) offer a promising alternative, but their deployment above 140 °C remains limited due to technical constraints and economic uncertainty. This thesis investigates their potential by first mapping the technological boundaries of different cycles and refrigerants, then developing a process-oriented modeling framework, and finally applying it to a real industrial case. A thermodynamic model was implemented in MATLAB® with CoolProp and Particle Swarm Optimization, enabling refrigerant screening and optimization of vapor compression cycles under realistic operating limits. The methodology was applied to milk powder spray drying, which requires process air at 210 °C, comparing four electrification layouts: direct air-to-air, air-to-air with preheating, air-to-water with mechanical vapor recompression (MVR), and air-to-water with MVR and preheating. Results showed achievable COP values between 1.7 and 2.6, with hydrocarbons emerging as the most suitable refrigerants. Air-to-air systems reached the highest efficiencies but at discharge temperatures of 215-223 °C, while air-to-water + MVR systems operated at around 12 bar and 150 °C, offering more robust and practical solutions. The integrated energy, emissions, and economic assessment confirmed the strong competitiveness of HTHPs in Sweden, where short payback times (<2 years) and major emission reductions were achieved. In Italy, results were more sensitive to energy prices, while in Poland both environmental and economic benefits were limited by the electricity mix. Overall, layouts with preheating provided the best balance of performance and cost, and air-to-water + MVR configurations were identified as the most practical pathway for industrial deployment. The findings demonstrate that HTHPs can play a decisive role in industrial decarbonization, though their competitiveness will strongly depend on national energy systems and supportive policy frameworks.
La decarbonizzazione del calore di processo nell'industria rappresenta una sfida fondamentale per la neutralità climatica, poiché la maggior parte della domanda è oggi soddisfatta da combustibili fossili. Le pompe di calore ad alta temperatura costituiscono un’alternativa promettente, ma il loro impiego oltre i 140 °C rimane limitato da vincoli tecnici e incertezze economiche. Questa tesi ne indaga il potenziale, analizzando i limiti tecnologici di cicli e refrigeranti, sviluppando un modello di simulazione orientato al processo e applicandolo a un caso industriale reale. È stato implementato un modello termodinamico in MATLAB® con CoolProp e ottimizzazione con algoritmo a sciame di particelle, che consente lo screening dei refrigeranti e l'ottimizzazione dei cicli a compressione di vapore entro limiti operativi realistici. La metodologia è stata applicata all'essiccamento del latte in polvere, che richiede aria a 210 °C, confrontando quattro configurazioni: aria-aria diretta, aria-aria con preriscaldamento, aria-acqua con ricompressione meccanica del vapore (MVR), e aria-acqua con MVR e preriscaldamento. I risultati hanno mostrato COP tra 1.7 e 2.6, individuando gli idrocarburi come i refrigeranti più promettenti. Le configurazioni aria-aria hanno raggiunto le efficienze più alte ma con temperature di mandata di 215-223 °C, mentre le soluzioni aria-acqua + MVR con circa 12 bar e 150 °C, risultano più praticabili. L’analisi energetica, ambientale ed economica ha confermato la competitività delle pompe di calore in Svezia, con payback time inferiori a 2 anni e forti riduzioni di emissioni. In Italia i risultati si sono mostrati più sensibili all’andamento dei prezzi dell'energia, mentre in Polonia i benefici sono stati limitati dall’elevata intensità carbonica e dal costo dell’elettricità. Nel complesso, le configurazioni con preriscaldamento sono risultate le più competitive, e quelle aria-acqua con MVR le più pratiche per l’implementazione. I risultati evidenziano che le pompe di calore ad alta temperatura possono avere un ruolo decisivo nella decarbonizzazione dei processi industriali, sebbene la loro competitività dipenda dal contesto energetico nazionale e da politiche di supporto adeguate.
Electrifying milk spray drying: 3E analysis of the integration of a 210 °C high-temperature heat pump designed with Particle Swarm Optimization
GIOVANNINI, BIANCA
2024/2025
Abstract
Decarbonizing industrial process heat is a key challenge for achieving climate neutrality, as most demand is currently met with fossil fuels. High-temperature heat pumps (HTHPs) offer a promising alternative, but their deployment above 140 °C remains limited due to technical constraints and economic uncertainty. This thesis investigates their potential by first mapping the technological boundaries of different cycles and refrigerants, then developing a process-oriented modeling framework, and finally applying it to a real industrial case. A thermodynamic model was implemented in MATLAB® with CoolProp and Particle Swarm Optimization, enabling refrigerant screening and optimization of vapor compression cycles under realistic operating limits. The methodology was applied to milk powder spray drying, which requires process air at 210 °C, comparing four electrification layouts: direct air-to-air, air-to-air with preheating, air-to-water with mechanical vapor recompression (MVR), and air-to-water with MVR and preheating. Results showed achievable COP values between 1.7 and 2.6, with hydrocarbons emerging as the most suitable refrigerants. Air-to-air systems reached the highest efficiencies but at discharge temperatures of 215-223 °C, while air-to-water + MVR systems operated at around 12 bar and 150 °C, offering more robust and practical solutions. The integrated energy, emissions, and economic assessment confirmed the strong competitiveness of HTHPs in Sweden, where short payback times (<2 years) and major emission reductions were achieved. In Italy, results were more sensitive to energy prices, while in Poland both environmental and economic benefits were limited by the electricity mix. Overall, layouts with preheating provided the best balance of performance and cost, and air-to-water + MVR configurations were identified as the most practical pathway for industrial deployment. The findings demonstrate that HTHPs can play a decisive role in industrial decarbonization, though their competitiveness will strongly depend on national energy systems and supportive policy frameworks.| File | Dimensione | Formato | |
|---|---|---|---|
|
2025_10_Giovannini.pdf
non accessibile
Descrizione: Testo della Tesi
Dimensione
7.72 MB
Formato
Adobe PDF
|
7.72 MB | Adobe PDF | Visualizza/Apri |
|
2025_10_Giovannini_Executive_Summary.pdf
non accessibile
Descrizione: Executive Summary
Dimensione
1.5 MB
Formato
Adobe PDF
|
1.5 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/243628