Slow and controlled breathing practices, particularly those based on diaphragmatic breathing, have their roots in ancient cultural and spiritual traditions, where breathing was regarded as a tool for physiological and mental regulation. Over the centuries, these practices were handed down but were partly forgotten with the advent of Western scientific medicine. However, in the 20th century, with the spread of Eastern philosophies and meditative practices in the West, breathing techniques regained popularity and began to attract increasing scientific interest in clinical and physiological contexts. Recent literature has highlighted several physiological benefits associated with these techniques, including reductions in respiratory rate (FR) and heart rate (HR), increases in heart rate variability (HRV), and a more efficient modulation of the autonomic nervous system, with a predominance of parasympathetic activity. Such modifications have been linked, in multiple studies, to a reduction in cardiovascular load. In this sense, low-frequency breathing techniques are currently under investigation for their potential cardioprotective effects, particularly in relation to the prevention of clinical conditions associated with autonomic or functional cardiac disorders. Despite theoretical advances and a growing body of observational studies, the scientific literature still lacks experimental research providing concrete and replicable numerical results on the correlation between mindful breathing techniques and their physiological effects. To address this gap, the present thesis adopts an experimental approach based on the collection and analysis of objective physiological data through advanced technologies. Specifically, optoelectronic plethysmography (OEP) is employed as a non-invasive method that enables three-dimensional, real-time monitoring of respiratory dynamics, allowing for a detailed analysis of parameters such as respiratory rate, lung volumes, and thoraco-abdominal motion distribution. In parallel, cardiovascular activity is assessed using the Equivital system, a validated wearable device for continuous monitoring of physiological variables, including heart rate and heart rate variability (HRV), the latter considered a reliable marker of autonomic nervous system function. The integration of these tools allows for accurate, objective, and replicable measurements, providing a solid basis for analyzing the effects of slow and controlled breathing techniques on physiological processes involved in autonomic regulation and cardiovascular response.
Le pratiche respiratorie a ritmo lento e controllato, in particolare quelle basate sulla respirazione diaframmatica, affondano le proprie radici in antiche tradizioni culturali e spirituali, dove il respiro era considerato uno strumento di regolazione fisiologica e mentale. Nel corso dei secoli, tali pratiche si sono tramandate e, con l’avvento della medicina scientifica in Occidente, sono state in parte dimenticate. Tuttavia, nel XX secolo, con la diffusione delle filosofie orientali e delle pratiche meditative in Occidente, le tecniche di respirazione hanno conosciuto una nuova diffusione, suscitando crescente interesse da parte della comunità scientifica in contesti clinico-fisiologici. In particolare, la letteratura recente ha evidenziato diversi benefici fisiologici associati a tali tecniche, tra cui la riduzione della frequenza respiratoria (FR) e cardiaca (FC), l’incremento della variabilità della frequenza cardiaca (HRV), e una più efficiente modulazione del sistema nervoso autonomo, con una predominanza dell’attività parasimpatica. Tali modificazioni sono state associate, in più studi, a una riduzione del carico cardiovascolare. In questo senso, le tecniche di respirazione a bassa frequenza sono attualmente oggetto di studio per il loro potenziale effetto cardioprotettivo, in particolare in relazione alla prevenzione di condizioni cliniche legate alle cardiopatie su base autonomica o disfunzionale. Nonostante i progressi teorici e la crescente quantità di studi osservazionali, la letteratura scientifica presenta ancora una carenza di ricerche sperimentali che forniscano risultati numerici concreti e replicabili riguardo alla correlazione tra tecniche di respirazione consapevole e gli effetti fisiologici conseguenti. Per rispondere a tale lacuna nella letteratura, la presente tesi adotta un approccio sperimentale fondato sulla raccolta e analisi di dati fisiologici oggettivi, mediante l’impiego di tecnologie avanzate. In particolare, viene utilizzata la pletismografia optoelettronica (OEP), un metodo non invasivo che consente il monitoraggio tridimensionale e in tempo reale della dinamica respiratoria, permettendo l’analisi dettagliata di parametri quali la frequenza respiratoria, i volumi polmonari e la distribuzione del movimento toraco-addominale. Parallelamente, per la valutazione dell’attività cardiovascolare, viene impiegato il sistema Equivital, un dispositivo wearable validato per il monitoraggio continuo di variabili fisiologiche, tra cui la frequenza cardiaca e la variabilità della frequenza cardiaca (HRV), quest’ultima considerata un indicatore affidabile dello stato del sistema nervoso autonomo. L’integrazione di questi strumenti consente di ottenere misurazioni accurate, oggettive e replicabili, fornendo una base solida per l’analisi degli effetti delle tecniche di respirazione lenta e controllata sui processi fisiologici coinvolti nella regolazione autonomica e nella risposta cardiovascolare.
Experimental analysis of the effects of controlled breathing and inspiratory muscle training: an integrated evaluation of respiratory kinematics and autonomic modulation using Optoelectronic Plethysmography and wearable systems
Patrono, Riccardo
2024/2025
Abstract
Slow and controlled breathing practices, particularly those based on diaphragmatic breathing, have their roots in ancient cultural and spiritual traditions, where breathing was regarded as a tool for physiological and mental regulation. Over the centuries, these practices were handed down but were partly forgotten with the advent of Western scientific medicine. However, in the 20th century, with the spread of Eastern philosophies and meditative practices in the West, breathing techniques regained popularity and began to attract increasing scientific interest in clinical and physiological contexts. Recent literature has highlighted several physiological benefits associated with these techniques, including reductions in respiratory rate (FR) and heart rate (HR), increases in heart rate variability (HRV), and a more efficient modulation of the autonomic nervous system, with a predominance of parasympathetic activity. Such modifications have been linked, in multiple studies, to a reduction in cardiovascular load. In this sense, low-frequency breathing techniques are currently under investigation for their potential cardioprotective effects, particularly in relation to the prevention of clinical conditions associated with autonomic or functional cardiac disorders. Despite theoretical advances and a growing body of observational studies, the scientific literature still lacks experimental research providing concrete and replicable numerical results on the correlation between mindful breathing techniques and their physiological effects. To address this gap, the present thesis adopts an experimental approach based on the collection and analysis of objective physiological data through advanced technologies. Specifically, optoelectronic plethysmography (OEP) is employed as a non-invasive method that enables three-dimensional, real-time monitoring of respiratory dynamics, allowing for a detailed analysis of parameters such as respiratory rate, lung volumes, and thoraco-abdominal motion distribution. In parallel, cardiovascular activity is assessed using the Equivital system, a validated wearable device for continuous monitoring of physiological variables, including heart rate and heart rate variability (HRV), the latter considered a reliable marker of autonomic nervous system function. The integration of these tools allows for accurate, objective, and replicable measurements, providing a solid basis for analyzing the effects of slow and controlled breathing techniques on physiological processes involved in autonomic regulation and cardiovascular response.| File | Dimensione | Formato | |
|---|---|---|---|
|
Executive_Summary.pdf
accessibile in internet solo dagli utenti autorizzati
Dimensione
811.41 kB
Formato
Adobe PDF
|
811.41 kB | Adobe PDF | Visualizza/Apri |
|
Tesi.pdf
accessibile in internet solo dagli utenti autorizzati
Dimensione
3.81 MB
Formato
Adobe PDF
|
3.81 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/243632