The mitigation of climate change has become a pressing global challenge, requiring innovative approaches to reduce atmospheric levels of CO2. Mineral carbonation is considered one of the most permanent and large-capacity options for CO2 sequestration from the atmosphere. It is based on the premise that the abundant mining waste (e.g., brucite, olivine, serpentine, wollastonite) can be taken advantage of by means of low-cost carbon fixation processes. Within this framework, the ANTICARB project aims to develop zero-emission technologies for CO2 sequestration by exploiting the carbonation of magnesium-rich minerals found in industrial waste. The possibility of capturing CO2 while simultaneously transforming it into a useful material is based on the carbonation reaction, through which magnesium silicates react with CO2 to form magnesium carbonate, a compound widely used both as a raw material and a finished product. However, conventional carbonation processes usually require very long time and are energy-intensive, which limits their actual industrial application. To overcome this issue, the use of microwave-assisted carbonation is being researched, a technique that can enhance reaction kinetics through selective heating, making the process faster and with a much lower energy consumption. This is the technique that will be employed for the preparation of the samples in this work. Among all the minerals involved in these industrial processes, brucite plays a crucial role due to its high reactivity with CO2. When exposed to carbon dioxide, brucite (Mg(OH)2) undergoes a water-mediated carbonation, forming stable magnesium carbonate (MgCO3) compounds such as magnesite (dynamically favored) and some hydrated phases like hydromagnesite or nesquehonite (kinetically favored). This thesis work, born in the ANTICARB framework, focused on brucite, as a simple and highly reactive model system, to investigate the early stages of carbonation at the nano-microscale, in order to reach a deeper understanding of the physical mechanisms behind this chemical reaction needed for further optimization of the process. The carbonation reaction was carried out under controlled solid-vapor conditions, instead of immersion in bulk water, to preserve the carbonation reaction products onto the brucite surfaces, avoiding dispersion of material in the bulk liquid. This spatial correlation allowed an efficient characterization of the post-reaction surfaces by using ex-situ AFM. A preliminary analysis revealed that carbonate precipitation preferentially happens along the step edges of the brucite terraces or surface defects, confirming their role as energetically favorable locations that facilitate the carbonation process. Furthermore, most of the precipitates tend to exhibit a hexagonal shape. This morphology mirrors the crystallographic directions of the underlying brucite (001) plane, suggesting that the growth of the new carbonate phase is structurally guided by the substrate. A quantitative study of individual precipitates identified two distinct growth regimes: an initial phase dominated by vertical growth, followed by a regime where lateral spreading prevails. Moreover, a correlation between precipitate dimensions and step height suggest that step edges not only act as preferential nucleation sites but also influence the subsequent growth of the carbonate phase. In contrast, experiments conducted under excess CO2 conditions resulted in uncontrolled and widespread precipitation, highlighting the delicate balance between dissolution and supersaturation. While not all mechanisms have been fully resolved, the results of this work support the hypothesis that the substrate’s topography is a significant factor in shaping the final morphology of the reacted surface. They represent a first step toward a more complete understanding of mineral carbonation pathways and may ultimately support the extension of this approach to more complex silicate systems relevant for large-scale CO2 sequestration and for the production of carbonates as reusable materials.
La mitigazione del cambiamento climatico è diventata una sfida globale sempre più urgente, che richiede approcci innovativi per ridurre i livelli atmosferici di CO2. La carbonatazione minerale è considerata una delle opzioni più permanenti e con maggiore capacità per la rimozione della CO2 dall’atmosfera. Essa si basa sull’idea di valorizzare i numerosi scarti minerari (come ad esempio brucite, olivina, serpentino, wollastonite) mediante processi di fissazione del carbonio a basso costo. Il progetto ANTICARB si inserisce proprio in questo contesto, mirando a sviluppare tecnologie a zero emissioni per la cattura della CO2, sfruttando la carbonatazione di minerali ricchi in magnesio presenti nei rifiuti industriali. La possibilità di catturare CO2 trasformandola al contempo in un materiale utile si basa sulla reazione di carbonatazione, attraverso la quale i silicati di magnesio reagiscono con l’anidride carbonica per formare carbonato di magnesio, un composto ampiamente utilizzato sia come materia prima che come prodotto finito. Tuttavia, i processi di carbonatazione convenzionali richiedono solitamente tempi molto lunghi e un elevato consumo energetico, limitandone l’effettiva applicazione su scala industriale. Per superare questo ostacolo, si sta studiando l'impiego della carbonatazione assistita da microonde, una tecnica in grado di accelerare la cinetica della reazione attraverso un riscaldamento selettivo, rendendo il processo più rapido e con un consumo energetico significativamente inferiore. Questa sarà la tecnica utilizzata anche per la preparazione dei campioni analizzati nel presente lavoro. Tra tutti i minerali coinvolti in tali processi industriali, la brucite (Mg(OH)2) riveste un ruolo cruciale per la sua elevata reattività con la CO2. Quando esposta all’anidride carbonica, la brucite va incontro ad una carbonatazione mediata dall’acqua, che porta alla formazione di composti stabili di carbonato di magnesio (MgCO3), come la magnesite (termodinamicamente favorita), e di alcune fasi idrate come l'idromagnesite o la nesquehonite (favorite cineticamente). Questa tesi, nata nell'ambito del progetto ANTICARB, si è focalizzata sulla brucite, adottata come sistema modello semplice e altamente reattivo, al fine di investigare le prime fasi della carbonatazione su scala nano-micrometrica. L'obiettivo è quello di raggiungere una comprensione più approfondita dei meccanismi fisici alla base di questa reazione chimica, necessaria per un'ulteriore ottimizzazione del processo. I campioni sono stati trattati in condizioni controllate in interfaccia solido-vapore, anziché in immersione, minimizzando gli effetti secondari associati alla presenza della fase liquida, preservando i prodotti sulla superficie della brucite e dunque permettendo un'efficace caratterizzazione mediante AFM ex-situ. Un'analisi preliminare ha rivelato che la formazione dei carbonati si verifica preferenzialmente lungo i bordi dei terrazzamenti ("step edges") della brucite o in corrispondenza di difetti superficiali, confermando il loro ruolo come siti energeticamente favorevoli. Inoltre, la maggior parte dei precipitati tende a mostrare una forma esagonale, la cui morfologia rispecchia le direzioni cristallografiche del sottostante piano (001) della brucite, suggerendo che la crescita della nuova fase sia strutturalmente guidata dal substrato. Uno studio quantitativo dei singoli precipitati ha evidenziato due distinti regimi di crescita: una fase iniziale dominata dallo sviluppo verticale, seguita da un regime in cui prevale l’espansione laterale. Inoltre, è stata osservata una correlazione tra le dimensioni dei precipitati e l’altezza dei gradini. Questo suggerisce che questi ultimi non agiscono solo come siti di nucleazione preferenziale, ma influenzano anche la crescita successiva del carbonato. In contrasto, gli esperimenti condotti in condizioni di eccesso di CO2 hanno portato a una precipitazione incontrollata e diffusa, sottolineando il delicato equilibrio tra cinetica di dissoluzione e sovrasaturazione. Pur non avendo chiarito tutti i meccanismi in gioco, i risultati di questo lavoro supportano l'ipotesi che la topografia del substrato sia un fattore determinante nel modellare la morfologia finale della superficie reattiva. Essi rappresentano un primo passo verso una comprensione più completa e l'ottimizzazione dei processi di carbonatazione minerale e potranno in futuro supportare l’estensione di questo approccio a sistemi di silicati più complessi, rilevanti per il sequestro della CO2 e per la produzione di carbonati come materiali riutilizzabili su larga scala.
Investigation by Atomic Force Microscopy of brucite (001) mineral surface after controlled carbonation reaction at the solid-vapor interface
MENNO di BUCCHIANICO, BARBARA
2024/2025
Abstract
The mitigation of climate change has become a pressing global challenge, requiring innovative approaches to reduce atmospheric levels of CO2. Mineral carbonation is considered one of the most permanent and large-capacity options for CO2 sequestration from the atmosphere. It is based on the premise that the abundant mining waste (e.g., brucite, olivine, serpentine, wollastonite) can be taken advantage of by means of low-cost carbon fixation processes. Within this framework, the ANTICARB project aims to develop zero-emission technologies for CO2 sequestration by exploiting the carbonation of magnesium-rich minerals found in industrial waste. The possibility of capturing CO2 while simultaneously transforming it into a useful material is based on the carbonation reaction, through which magnesium silicates react with CO2 to form magnesium carbonate, a compound widely used both as a raw material and a finished product. However, conventional carbonation processes usually require very long time and are energy-intensive, which limits their actual industrial application. To overcome this issue, the use of microwave-assisted carbonation is being researched, a technique that can enhance reaction kinetics through selective heating, making the process faster and with a much lower energy consumption. This is the technique that will be employed for the preparation of the samples in this work. Among all the minerals involved in these industrial processes, brucite plays a crucial role due to its high reactivity with CO2. When exposed to carbon dioxide, brucite (Mg(OH)2) undergoes a water-mediated carbonation, forming stable magnesium carbonate (MgCO3) compounds such as magnesite (dynamically favored) and some hydrated phases like hydromagnesite or nesquehonite (kinetically favored). This thesis work, born in the ANTICARB framework, focused on brucite, as a simple and highly reactive model system, to investigate the early stages of carbonation at the nano-microscale, in order to reach a deeper understanding of the physical mechanisms behind this chemical reaction needed for further optimization of the process. The carbonation reaction was carried out under controlled solid-vapor conditions, instead of immersion in bulk water, to preserve the carbonation reaction products onto the brucite surfaces, avoiding dispersion of material in the bulk liquid. This spatial correlation allowed an efficient characterization of the post-reaction surfaces by using ex-situ AFM. A preliminary analysis revealed that carbonate precipitation preferentially happens along the step edges of the brucite terraces or surface defects, confirming their role as energetically favorable locations that facilitate the carbonation process. Furthermore, most of the precipitates tend to exhibit a hexagonal shape. This morphology mirrors the crystallographic directions of the underlying brucite (001) plane, suggesting that the growth of the new carbonate phase is structurally guided by the substrate. A quantitative study of individual precipitates identified two distinct growth regimes: an initial phase dominated by vertical growth, followed by a regime where lateral spreading prevails. Moreover, a correlation between precipitate dimensions and step height suggest that step edges not only act as preferential nucleation sites but also influence the subsequent growth of the carbonate phase. In contrast, experiments conducted under excess CO2 conditions resulted in uncontrolled and widespread precipitation, highlighting the delicate balance between dissolution and supersaturation. While not all mechanisms have been fully resolved, the results of this work support the hypothesis that the substrate’s topography is a significant factor in shaping the final morphology of the reacted surface. They represent a first step toward a more complete understanding of mineral carbonation pathways and may ultimately support the extension of this approach to more complex silicate systems relevant for large-scale CO2 sequestration and for the production of carbonates as reusable materials.| File | Dimensione | Formato | |
|---|---|---|---|
|
2025_10_MennoDiBucchianico.pdf
non accessibile
Descrizione: tesi
Dimensione
28.15 MB
Formato
Adobe PDF
|
28.15 MB | Adobe PDF | Visualizza/Apri |
|
2025_10_MennoDiBucchianico_ExecutiveSummary.pdf
non accessibile
Descrizione: executive summary
Dimensione
2.09 MB
Formato
Adobe PDF
|
2.09 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/243666