Poly(lactic acid) (PLA) reinforced with hydroxyapatite (HA) is a biodegradable and bioactive composite of particular interest for bone tissue engineering, as it combines the resorbability of the polymer with the stiffness and osteoconductivity of the ceramic phase. Despite its potential, the long-term performance of PLA/HA devices is still not fully understood, mainly due to the coupled effects of hydrolytic degradation and mechanical response. This thesis develops a numerical framework to model the evolution of PLA/HA mechanical properties during degradation, extending formulations originally conceived for neat PLA. The polymer matrix degradation is described through the evolution of molecular weight, crystallinity, and porosity, which are linked to the effective elastic parameters by micromechanical homogenization based on Mori–Tanaka schemes. Different multiscale configurations were implemented and compared, while the HA phase was modeled as an elastic, inert inclusion with constant volume fraction. Experimental data at time zero, including three-point bending tests and microstructural analyses, were used to calibrate the model, and finite element simulations in Abaqus were employed to reproduce the initial mechanical response of printed specimens. The results highlight that, although HA does not undergo hydrolysis, it indirectly modifies the degradation kinetics by reducing the growth rate of porosity and enhancing the early increase in crystallinity, leading to a transient reinforcement of the material before the progressive stiffness loss dominated by porosity. The combined micromechanical and finite element approach provides a predictive tool for analyzing the long-term behavior of PLA/HA scaffolds and supports the design of bioresorbable devices that ensure adequate initial mechanical stability while being gradually replaced by new bone tissue.
L’acido polilattico (PLA) rinforzato con idrossiapatite (HA) rappresenta un composito biodegradabile e bioattivo di particolare interesse per la rigenerazione ossea, in quanto unisce la riassorbibilità del polimero con la rigidezza e l’osteoconduzione della fase ceramica. Nonostante il potenziale, le prestazioni a lungo termine dei dispositivi in PLA/HA non sono ancora pienamente comprese, principalmente a causa dell’interazione tra degradazione idrolitica e risposta meccanica. Questa tesi sviluppa un modello numerico per descrivere l’evoluzione delle proprietà meccaniche del composito durante il degrado, estendendo formulazioni originariamente concepite per il PLA puro. La degradazione della matrice polimerica è descritta attraverso l’evoluzione di peso molecolare, cristallinità e porosità, grandezze collegate ai parametri elastici equivalenti mediante omogeneizzazione micromeccanica secondo lo schema di Mori–Tanaka. Sono state implementate e confrontate diverse configurazioni multiscala, mentre la fase di HA è stata modellata come inclusione elastica, inerte e a frazione volumetrica costante. I dati sperimentali al tempo zero, comprendenti prove di flessione a tre punti e analisi microstrutturali, sono stati utilizzati per la calibrazione del modello; simulazioni agli elementi finiti in Abaqus hanno consentito di riprodurre la risposta meccanica iniziale di provini stampati. I risultati mostrano che, pur non subendo idrolisi, l’HA modifica indirettamente la cinetica di degradazione rallentando la crescita della porosità e amplificando l’incremento iniziale di cristallinità, con un transitorio rinforzo meccanico seguito da una perdita di rigidezza dominata dalla porosità. L’approccio combinato micromeccanico e FEM fornisce uno strumento predittivo per l’analisi del comportamento a lungo termine degli scaffold in PLA/HA e supporta la progettazione di dispositivi riassorbibili in grado di garantire adeguata stabilità iniziale e progressiva sostituzione con nuovo tessuto osseo.
Modellazione del composito PLA/HA: degradazione idrolitica e risposta meccanica
SALVATERRA, SOFIA
2024/2025
Abstract
Poly(lactic acid) (PLA) reinforced with hydroxyapatite (HA) is a biodegradable and bioactive composite of particular interest for bone tissue engineering, as it combines the resorbability of the polymer with the stiffness and osteoconductivity of the ceramic phase. Despite its potential, the long-term performance of PLA/HA devices is still not fully understood, mainly due to the coupled effects of hydrolytic degradation and mechanical response. This thesis develops a numerical framework to model the evolution of PLA/HA mechanical properties during degradation, extending formulations originally conceived for neat PLA. The polymer matrix degradation is described through the evolution of molecular weight, crystallinity, and porosity, which are linked to the effective elastic parameters by micromechanical homogenization based on Mori–Tanaka schemes. Different multiscale configurations were implemented and compared, while the HA phase was modeled as an elastic, inert inclusion with constant volume fraction. Experimental data at time zero, including three-point bending tests and microstructural analyses, were used to calibrate the model, and finite element simulations in Abaqus were employed to reproduce the initial mechanical response of printed specimens. The results highlight that, although HA does not undergo hydrolysis, it indirectly modifies the degradation kinetics by reducing the growth rate of porosity and enhancing the early increase in crystallinity, leading to a transient reinforcement of the material before the progressive stiffness loss dominated by porosity. The combined micromechanical and finite element approach provides a predictive tool for analyzing the long-term behavior of PLA/HA scaffolds and supports the design of bioresorbable devices that ensure adequate initial mechanical stability while being gradually replaced by new bone tissue.| File | Dimensione | Formato | |
|---|---|---|---|
|
2025_10_Salvaterra_Tesi.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Tesi
Dimensione
3.01 MB
Formato
Adobe PDF
|
3.01 MB | Adobe PDF | Visualizza/Apri |
|
2025_10_Salvaterra_ExecutiveSummary.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Executive Summary
Dimensione
1.1 MB
Formato
Adobe PDF
|
1.1 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/243698