This thesis is situated within the field of research on Boron Neutron Capture Therapy (BNCT), an oncological radiotherapy technique that exploits the interaction between $^{10}$B and thermal neutrons to induce localized lethal damage in tumor cells. Specifically, when $^{10}$B captures a thermal neutron, a nuclear reaction occurs, producing high linear energy transfer (LET) particles, primarily $\alpha$ particles and lithium nuclei ($^7$Li). These fragments have a biological range on the order of a few micrometers, comparable to the dimensions of a cell. This makes it possible to concentrate DNA damage exclusively within cells that have accumulated a sufficient amount of boron, while sparing the surrounding healthy tissues. The effectiveness of this technique, therefore, critically depends on boron uptake in cells and on its distribution at the micrometric level. It is essential that the boron-containing drug is selectively internalized by tumor cells in an adequate amounts while minimizing its accumulation in the healthy cells. Moreover, the subcellular localization of boron plays a decisive role: proximity of boron to the nucleus, where DNA resides, significantly enhances the effectiveness of the treatment. Alongside the biological aspects, the characterization and management of the radiation field in BNCT are also of central importance. In clinical practice, the neutron beam is never purely thermal; instead, it exhibits an energy distribution that includes epithermal and fast neutrons as well as photon components. The quality and intensity of the beam must be properly modeled and optimized to ensure sufficient penetration into tissue, effective thermalization near the tumor, and the highest possible tumor to healthy tissue dose ratio. The aim of this work is the evaluation of experimental data obtained in previous studies carried out in Pavia, analyzed through microdosimetric models in order to derive parameters suitable for describing treatment quality and enabling clinical prediction by comparison with photon-based clinical data from conventional radiotherapy. A geometrical modeling was developed to represent the Glioblastoma (U87) cell line, replicated in a lattice structure to simulate tissue conditions at the microscopic level. The main dose components and both their spatial and spectral distributions were considered to estimate the relative biological effectiveness (RBE) through empirical and microdosimetric models (MKM, SMK). The work involved decomposing the energy contributions as a function of spatial origin and particle type, and employing simulation data obtained with the PHITS software. These results, integrated into models available in the literature, enabled the derivation of survival curves and RBE values, allowing comparison with experimental data. This study provides a foundation for future developments and more accurate simulations aimed at improving the understanding of the biological response and optimizing BNCT treatment in the clinical setting.
Questa tesi si colloca nell'ambito della ricerca sulla Boron Neutron Capture Theraphy (BNCT), una tecnica di radioterapia oncologica che sfrutta l'interazione tra il $^{10}B$ ed i neutroni termici al fine di indurre danni letali localizzati nelle cellule tumorali. In particolare, quando il $^{10}$B cattura un neutrone termico, avviene una reazione nucleare che produce particelle ad alta linear energy transfer (LET), principalmente particelle $\alpha$ e nuclei di litio ($^7$Li). Questi frammenti hanno un range biologico dell’ordine di pochi micrometri, comparabile con le dimensioni di una cellula: ciò consente di concentrare il danno al DNA nelle sole cellule che hanno accumulato una quantità sufficiente di boro, risparmiando i tessuti sani circostanti. L'efficacia di questa tecnica dipende pertanto in maniera decisiva dall'uptake del boro nelle cellule e dalla sua distrubuzione a livello micrometrico: è fondamentale che il farmaco contenente il boro venga internalizzato selettivamente nelle cellule tumorali in quantità adeguate, minimizzando al contempo l'accumulo nelle cellule sane ed è inoltre determinante la localizzazione del boro a livello cellulare e subcellulare, la vicinanza del boro al nucleo, dove risiede il DNA, aumenta notevolmente l'efficacia del trattamento. Accanto alla componente biologica, anche la caratterizzazione e la gestione del campo di radiazione in BNCT rivestono un ruolo centrale. In clinica, il fascio di neutroni non è mai puramente termico, presenta bensì una distribuzione energetica comprendente sia neutroni epitermici che veloci, oltre alle componenti fotoniche. La qualità e l'intensità del fascio devono essere opportunamente modellate ed ottimizzate al fine di garantire una penetrazione sufficiente nel tessuto, una termalizzazione efficace in prossimità del tumore ed un rapporto tra dose tumorale e dose sano il più alto possibile. Lo scopo del lavoro consiste nella valutazione di dati sperimentali ricavati da precedenti lavori svolti nelle sede di Pavia attraverso modelli microdosimetrici con l'obiettivo di ottenere valori adatti a descriverne la qualità del trattamento e permetterne di avere una previsione clinica confrontandosi con dati clinici sui fotoni, quindi ricavati dalla radioterapia convenzionale. E' stata realizzata una modellazione geometrica che rappresenta una linea cellulare di Glioblastoma (U87), replicata in struttura reticolare per simulare le condizioni del tessuto a livello microscopico. Sono state considerate le principali componenti della dose e le loro distribuzioni spaziali e spettrali al fine di stimare l'efficacia biologica relativa (RBE) tramite modelli empirici e microdosimetrici (MKM, SMK). Il lavoro ha previsto la scomposizione dei contributi energetici in funzione dell'origine spaziale e del tipo di particella, l'utilizzo dei dati ricavati da simulazioni tramite il software PHITS che, inserite in modelli già presenti in letteratura, hanno permesso di ottenere delle curve di sopravvivenza e valori di RBE che consentono la comparazione dei dati sperimentali disponibili. Il lavoro costituisce una base per futuri sviluppi, simulazioni più accurate volte al miglioramento della comprensione della risposta biologica e ottimizzare il trattamento BNCT in ambito clinico
Integration of biological and physical models for RBE estimation in BNCT: application to the U87 cell line
Albenga, Stefano
2024/2025
Abstract
This thesis is situated within the field of research on Boron Neutron Capture Therapy (BNCT), an oncological radiotherapy technique that exploits the interaction between $^{10}$B and thermal neutrons to induce localized lethal damage in tumor cells. Specifically, when $^{10}$B captures a thermal neutron, a nuclear reaction occurs, producing high linear energy transfer (LET) particles, primarily $\alpha$ particles and lithium nuclei ($^7$Li). These fragments have a biological range on the order of a few micrometers, comparable to the dimensions of a cell. This makes it possible to concentrate DNA damage exclusively within cells that have accumulated a sufficient amount of boron, while sparing the surrounding healthy tissues. The effectiveness of this technique, therefore, critically depends on boron uptake in cells and on its distribution at the micrometric level. It is essential that the boron-containing drug is selectively internalized by tumor cells in an adequate amounts while minimizing its accumulation in the healthy cells. Moreover, the subcellular localization of boron plays a decisive role: proximity of boron to the nucleus, where DNA resides, significantly enhances the effectiveness of the treatment. Alongside the biological aspects, the characterization and management of the radiation field in BNCT are also of central importance. In clinical practice, the neutron beam is never purely thermal; instead, it exhibits an energy distribution that includes epithermal and fast neutrons as well as photon components. The quality and intensity of the beam must be properly modeled and optimized to ensure sufficient penetration into tissue, effective thermalization near the tumor, and the highest possible tumor to healthy tissue dose ratio. The aim of this work is the evaluation of experimental data obtained in previous studies carried out in Pavia, analyzed through microdosimetric models in order to derive parameters suitable for describing treatment quality and enabling clinical prediction by comparison with photon-based clinical data from conventional radiotherapy. A geometrical modeling was developed to represent the Glioblastoma (U87) cell line, replicated in a lattice structure to simulate tissue conditions at the microscopic level. The main dose components and both their spatial and spectral distributions were considered to estimate the relative biological effectiveness (RBE) through empirical and microdosimetric models (MKM, SMK). The work involved decomposing the energy contributions as a function of spatial origin and particle type, and employing simulation data obtained with the PHITS software. These results, integrated into models available in the literature, enabled the derivation of survival curves and RBE values, allowing comparison with experimental data. This study provides a foundation for future developments and more accurate simulations aimed at improving the understanding of the biological response and optimizing BNCT treatment in the clinical setting.| File | Dimensione | Formato | |
|---|---|---|---|
|
Tesi_Albenga_Stefano.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Master Thesis work
Dimensione
2.01 MB
Formato
Adobe PDF
|
2.01 MB | Adobe PDF | Visualizza/Apri |
|
Executive_Summary_Albenga_stefano.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Executive Summary in pdf file
Dimensione
602.01 kB
Formato
Adobe PDF
|
602.01 kB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/243729