Laser Powder Bed Fusion (LPBF) is one of the most advanced Additive Manufacturing (AM) techniques for producing metallic components, yet its industrial adoption is still limited by the occurrence of process-induced defects. In-situ monitoring offers a fundamental route to address these limitations, enabling real-time observation of the process and providing signatures that can be correlated with the onset of instabilities and defect formation. Among the observable process signatures, thermal behavior is of primary importance, as it directly governs microstructural evolution and strongly influences defect formation mechanisms. Excessive heat accumulation can lead to residual stresses, deformations, swelling, and porosity, compromising the integrity of the final component. Complementary to thermal effects, spattering has attracted increasing attention due to its dual role as both an indicator of melt pool instability and a direct source of flaws through redeposition and powder bed disturbance. While spattering and thermal behavior have been extensively studied as separate phenomena, their combined analysis under varying printing strategies and geometrical configurations remains largely unexplored. This thesis addresses this gap by jointly investigating spattering dynamics and thermal behavior through a dedicated multi-sensor monitoring setup, integrating high-speed imaging and infrared thermography. The experimental campaign was specifically designed to analyze the influence of geometry and scanning strategies, with particular attention to the role of inter-scan track delay on heat accumulation and spatter generation. By correlating optical and thermal data with ex-situ observations, this work provides additional insights on the mechanisms governing spatter generation, heat accumulation, and their implications on process stability. The proposed approach contributes to the development of monitoring methodologies capable of linking in-situ signatures to defect formation mechanisms, supporting the optimization of L-PBF processing strategies and fostering the transition toward more reliable metal additive manufacturing technologies.
La Laser Powder Bed Fusion (LPBF) rappresenta una delle tecniche più avanzate di Additive Manufacturing (AM) per la produzione di componenti metallici; tuttavia, la sua adozione industriale risulta ancora limitata a causa della presenza di difetti indotti dal processo. Il monitoraggio in-situ costituisce un approccio fondamentale per affrontare tali limitazioni, consentendo l’osservazione in tempo reale del processo e fornendo segnali che possono essere correlati all’insorgere di instabilità e alla formazione di difetti. Tra i segnali di processo osservabili, il comportamento termico riveste un ruolo di primaria importanza, poiché governa direttamente l’evoluzione microstrutturale e influenza fortemente i meccanismi di formazione dei difetti. Un eccessivo accumulo di calore può infatti generare tensioni residue, deformazioni, rigonfiamenti e porosità, compromettendo l’integrità del componente finale. Complementare agli effetti termici, lo spattering ha suscitato crescente interesse per il suo duplice ruolo: da un lato come indicatore di instabilità della melt pool, dall’altro come causa diretta di difetti attraverso la ridistribuzione di particelle e la perturbazione del letto di polvere. Sebbene spattering e comportamento termico siano stati ampiamente studiati come fenomeni distinti, la loro analisi congiunta in funzione di differenti strategie di stampa e configurazioni geometriche rimane in gran parte inesplorata. Questa tesi si propone di colmare tale lacuna, investigando congiuntamente le dinamiche di spattering e il comportamento termico attraverso un sistema di monitoraggio multisensore dedicato, che integra imaging ad alta velocità e termografia a infrarossi. La campagna sperimentale è stata specificamente progettata per analizzare l’influenza della geometria e delle strategie di scansione, con particolare attenzione al ruolo del ritardo tra le scan track sull’accumulo termico e sulla generazione di spatter. Correlando i dati ottici e termici con osservazioni ex-situ, questo lavoro fornisce ulteriori approfondimenti sui meccanismi che regolano la generazione di spatter, l’accumulo termico e le relative implicazioni sulla stabilità del processo. L’approccio proposto contribuisce allo sviluppo di metodologie di monitoraggio in grado di collegare i segnali in-situ ai meccanismi di formazione dei difetti, supportando l’ottimizzazione delle strategie di processo in LPBF e favorendo la transizione verso tecnologie di additive manufacturing metallico più affidabili.
Effect of printing strategy and part geometry on heat accumulation and spatter generation in LPBF through in-situ high-speed imaging
Demi, Marco
2024/2025
Abstract
Laser Powder Bed Fusion (LPBF) is one of the most advanced Additive Manufacturing (AM) techniques for producing metallic components, yet its industrial adoption is still limited by the occurrence of process-induced defects. In-situ monitoring offers a fundamental route to address these limitations, enabling real-time observation of the process and providing signatures that can be correlated with the onset of instabilities and defect formation. Among the observable process signatures, thermal behavior is of primary importance, as it directly governs microstructural evolution and strongly influences defect formation mechanisms. Excessive heat accumulation can lead to residual stresses, deformations, swelling, and porosity, compromising the integrity of the final component. Complementary to thermal effects, spattering has attracted increasing attention due to its dual role as both an indicator of melt pool instability and a direct source of flaws through redeposition and powder bed disturbance. While spattering and thermal behavior have been extensively studied as separate phenomena, their combined analysis under varying printing strategies and geometrical configurations remains largely unexplored. This thesis addresses this gap by jointly investigating spattering dynamics and thermal behavior through a dedicated multi-sensor monitoring setup, integrating high-speed imaging and infrared thermography. The experimental campaign was specifically designed to analyze the influence of geometry and scanning strategies, with particular attention to the role of inter-scan track delay on heat accumulation and spatter generation. By correlating optical and thermal data with ex-situ observations, this work provides additional insights on the mechanisms governing spatter generation, heat accumulation, and their implications on process stability. The proposed approach contributes to the development of monitoring methodologies capable of linking in-situ signatures to defect formation mechanisms, supporting the optimization of L-PBF processing strategies and fostering the transition toward more reliable metal additive manufacturing technologies.| File | Dimensione | Formato | |
|---|---|---|---|
|
2025_10_Demi_Thesis_01.pdf
non accessibile
Descrizione: Testo tesi
Dimensione
20.04 MB
Formato
Adobe PDF
|
20.04 MB | Adobe PDF | Visualizza/Apri |
|
2025_10_Demi_Executive Summary_02.pdf
non accessibile
Descrizione: Testo executive summary
Dimensione
1.01 MB
Formato
Adobe PDF
|
1.01 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/243757