Wearable devices are becoming increasingly common in daily life, driving strong interest in solutions for continuous health monitoring. This thesis investigates the engineering and performance evaluation of electrodes to be integrated with STMicroelectronics platforms with the aim of enabling reliable electrocardiogram (ECG) acquisition in wearable devices. Two cost-effective fabrication strategies were explored. Electrifi, a copper-based conductive filament, was used to produce electrodes through fused deposition modeling (FDM), while flexible electrodes were obtained by dip coating cotton textiles and polyurethane earbuds in PEDOT:PSS dispersions. The influence of multiple dip cycles and the addition of TWEEN~80, a biocompatible surfactant, to the dispersion was investigated. Electrode performance was evaluated by electrochemical impedance spectroscopy on a custom skin phantom designed to mimic real-use conditions and by in-vivo recordings processed to extract quality indicators such as the signal-to-noise ratio (SNR). Results on the skin phantom were limited by inconsistencies across the frequency range of interest. In-vivo measurements highlighted the positive effect of TWEEN~80 and multiple dip cycles in textile prototypes, which achieved SNR higher than most commercial dry electrodes, although durability remains a concern. Prototype earbuds were able to record ECGs, but their performance was inferior to commercial alternatives and they suffered from rapid deterioration. On the other hand, FDM electrodes were able to consistently register ECGs, showing promise as a low-cost alternative to commercial electrodes, even though their SNR remained lower.
I dispositivi indossabili stanno diventando sempre più comuni nella vita quotidiana, suscitando un forte interesse per soluzioni dedicate al monitoraggio continuo della salute. In tale contesto, questa tesi indaga la progettazione e la valutazione delle prestazioni di elettrodi da utilizzare in combinazione con piattaforme di STMicroelectronics per consentire l’acquisizione di elettrocardiogrammi (ECG) nei dispositivi indossabili. Sono state esplorate due strategie di fabbricazione a basso costo e scalabili. Electrifi, un filamento conduttivo a base di rame, è stato utilizzato per produrre elettrodi tramite modellazione a deposizione fusa (FDM), mentre elettrodi flessibili sono stati ottenuti tramite rivestimento per immersione di tessuti in cotone e inserti auricolari in poliuretano con dispersioni di PEDOT:PSS. È stata analizzata l’influenza di cicli multipli di immersione e dell’aggiunta alla dispersione di TWEEN~80, un tensioattivo biocompatibile. Le prestazioni degli elettrodi sono state valutate mediante spettroscopia di impedenza elettrochimica su un fantoccio cutaneo progettato per simulare le condizioni d’uso reali, e tramite registrazioni in vivo elaborate per estrarre indicatori di qualità quali il rapporto segnale-rumore (SNR). I risultati ottenuti sul fantoccio cutaneo hanno mostrato inconsistenze nella gamma di frequenze di interesse. Le misure in vivo hanno evidenziato l’effetto positivo dell'aggiunta di TWEEN~80 e dei cicli multipli di immersione nei prototipi tessili, che hanno raggiunto valori di SNR superiori rispetto alla maggior parte delle alternative commerciali, sebbene la durabilità resti un aspetto critico. I prototipi di inserti auricolari sono in grado acquisire ECG, ma con prestazioni inferiori rispetto alle alternative commerciali; inoltre, sono soggetti a un rapido deterioramento. Al contrario, gli elettrodi realizzati con FDM sono stati in grado di registrare ECG in modo affidabile, mostrando il loro potenziale come alternativa a basso costo agli elettrodi commerciali, sebbene con valori di SNR inferiori.
Engineering and performance analysis of advanced dry electrodes for biosignal acquisition in wearable devices
MICCICHÉ, RICCARDO
2024/2025
Abstract
Wearable devices are becoming increasingly common in daily life, driving strong interest in solutions for continuous health monitoring. This thesis investigates the engineering and performance evaluation of electrodes to be integrated with STMicroelectronics platforms with the aim of enabling reliable electrocardiogram (ECG) acquisition in wearable devices. Two cost-effective fabrication strategies were explored. Electrifi, a copper-based conductive filament, was used to produce electrodes through fused deposition modeling (FDM), while flexible electrodes were obtained by dip coating cotton textiles and polyurethane earbuds in PEDOT:PSS dispersions. The influence of multiple dip cycles and the addition of TWEEN~80, a biocompatible surfactant, to the dispersion was investigated. Electrode performance was evaluated by electrochemical impedance spectroscopy on a custom skin phantom designed to mimic real-use conditions and by in-vivo recordings processed to extract quality indicators such as the signal-to-noise ratio (SNR). Results on the skin phantom were limited by inconsistencies across the frequency range of interest. In-vivo measurements highlighted the positive effect of TWEEN~80 and multiple dip cycles in textile prototypes, which achieved SNR higher than most commercial dry electrodes, although durability remains a concern. Prototype earbuds were able to record ECGs, but their performance was inferior to commercial alternatives and they suffered from rapid deterioration. On the other hand, FDM electrodes were able to consistently register ECGs, showing promise as a low-cost alternative to commercial electrodes, even though their SNR remained lower.| File | Dimensione | Formato | |
|---|---|---|---|
|
2025_10_Micciche_01.pdf
non accessibile
Descrizione: Testo della tesi
Dimensione
25.87 MB
Formato
Adobe PDF
|
25.87 MB | Adobe PDF | Visualizza/Apri |
|
2025_10_Micciche_02.pdf
non accessibile
Descrizione: Testo dell'executive summary
Dimensione
2.97 MB
Formato
Adobe PDF
|
2.97 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/243764