The optimization of sensor placement (Optimal Sensor Placement, OSP) plays a central role in fluid dynamics applications, where reconstructing complex fields from a limited number of measurements is essential for real-time monitoring and control. In this work, measurements are simulated virtually through high-fidelity snapshots obtained from Computational Fluid Dynamics (CFD) simulations, providing a controlled and reproducible environment to evaluate different placement strategies. Classical methodologies rely on model-order reduction, experimental design criteria, and greedy or probabilistic approaches, but they show limitations in presence of nonlinear dynamics or when only a small number of sensors is available. This thesis introduces a continuous formulation of OSP, where sensor coordinates are treated as optimizable variables through differentiable sampling operators and neural network–based reconstructors. The reconstruction model is pre-trained to ensure robustness with respect to arbitrary sensor configurations, thereby enabling efficient optimization of sensor locations without the need for retraining. The main contribution is a two-stage protocol: (i) pretraining of a reconstructor on CFD data, and (ii) optimization of sensor coordinates via gradient descent and exploration heuristics. The methodology is applied to airfoil simulations with varying geometries and Reynolds numbers. It is then compared against classical baselines such as QR-POD and information-theoretic criteria, assessing reconstruction accuracy and sensitivity to flow conditions. Numerical results show that the proposed approach reduces reconstruction error compared to traditional methods and provides greater flexibility in constrained scenarios, highlighting the potential of differentiable techniques for sensor design in fluid dynamics.
L’ottimizzazione del posizionamento dei sensori (Optimal Sensor Placement, OSP) riveste un ruolo centrale nelle applicazioni di fluidodinamica, dove la ricostruzione di campi complessi a partire da un numero limitato di misurazioni è essenziale per il monitoraggio e il controllo in tempo reale. In questa tesi le misurazioni vengono simulate virtualmente tramite snapshot ad alta fedeltà ottenuti da simulazioni di fluidodinamica computazionale (CFD), che forniscono un ambiente controllato e riproducibile per valutare diverse strategie di posizionamento. Le metodologie classiche si basano su riduzione di ordine del modello, criteri di progettazione sperimentale e approcci greedy o probabilistici, ma mostrano limiti in presenza di dinamiche non lineari o ridotto numero di sensori. Questa tesi utilizza una formulazione continua dell’OSP, in cui le coordinate dei sensori sono trattate come variabili ottimizzabili attraverso operatori di campionamento differenziabili e ricostruttori basati su reti neurali. Il modello di ricostruzione viene pre-addestrato per garantire robustezza rispetto a configurazioni di sensori arbitrarie, consentendo in seguito di ottimizzare le posizioni in modo efficiente senza necessità di riaddestramento. Il contributo principale consiste in un protocollo a due stadi: (i) pre-training di un ricostruttore su dati CFD, e (ii) ottimizzazione delle coordinate sensoristiche mediante discesa di gradiente ed euristiche di esplorazione. La metodologia viene applicata a simulazioni di profili alari in diverse geometrie e numero di Reynolds. Viene poi confrontata con baseline classici quali QR-POD e criteri informativi, valutando accuratezza di ricostruzione e sensibilità alle condizioni di flusso. I risultati numerici mostrano che l’approccio proposto riduce l’errore di ricostruzione rispetto ai metodi tradizionali e garantisce maggiore flessibilità in scenari vincolati, evidenziando il potenziale delle tecniche differenziabili per il design di sensori in fluidodinamica.
Differentiable optimizaton of virtual sensor placement in computational fluid dynamics
RACANO, ADRIANO
2024/2025
Abstract
The optimization of sensor placement (Optimal Sensor Placement, OSP) plays a central role in fluid dynamics applications, where reconstructing complex fields from a limited number of measurements is essential for real-time monitoring and control. In this work, measurements are simulated virtually through high-fidelity snapshots obtained from Computational Fluid Dynamics (CFD) simulations, providing a controlled and reproducible environment to evaluate different placement strategies. Classical methodologies rely on model-order reduction, experimental design criteria, and greedy or probabilistic approaches, but they show limitations in presence of nonlinear dynamics or when only a small number of sensors is available. This thesis introduces a continuous formulation of OSP, where sensor coordinates are treated as optimizable variables through differentiable sampling operators and neural network–based reconstructors. The reconstruction model is pre-trained to ensure robustness with respect to arbitrary sensor configurations, thereby enabling efficient optimization of sensor locations without the need for retraining. The main contribution is a two-stage protocol: (i) pretraining of a reconstructor on CFD data, and (ii) optimization of sensor coordinates via gradient descent and exploration heuristics. The methodology is applied to airfoil simulations with varying geometries and Reynolds numbers. It is then compared against classical baselines such as QR-POD and information-theoretic criteria, assessing reconstruction accuracy and sensitivity to flow conditions. Numerical results show that the proposed approach reduces reconstruction error compared to traditional methods and provides greater flexibility in constrained scenarios, highlighting the potential of differentiable techniques for sensor design in fluid dynamics.| File | Dimensione | Formato | |
|---|---|---|---|
|
2025_10_Racano_executive summary.pdf
accessibile in internet solo dagli utenti autorizzati
Dimensione
5.12 MB
Formato
Adobe PDF
|
5.12 MB | Adobe PDF | Visualizza/Apri |
|
2025_10_Racano_Tesi.pdf
non accessibile
Dimensione
28.84 MB
Formato
Adobe PDF
|
28.84 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/243781