This thesis develops and analyzes a fully magnetic Attitude Determination and Con- trol System for nanosatellites, using only magnetometer sensor measurements and mag- netorquer actuators. In addition to proposing an engineering design for a magnetome- ter–magnetorquer based ADCS, a significant focus is placed on the scientific modeling and characterization of geomagnetic interactions in spacecraft attitude estimation and control. A high-fidelity simulation framework was built to implement a Multiplicative Extended Kalman Filter (MEKF) for attitude estimation and to evaluate two detumbling control strategies. Using this model-based approach, the research systematically investigates how the Earth’s magnetic field environment and orbital parameters affect estimation observ- ability and control effectiveness. In particular, the ADCS performance is characterized as a function of orbit altitude, inclination, satellite angular velocity, and the geomag- netic field variation. Monte Carlo analyses and parametric simulations reveal a strong dependence of the magnetometer-only MEKF accuracy on the geomagnetic conditions: at higher altitudes, the weaker field degrades filter observability and estimation accu- racy, and near-equatorial orbits pose the greatest challenge due to limited field direction variation. On the other hand, higher-inclination orbits provide more favorable magnetic field changes, improving attitude observability and estimation consistency. Notably, im- posing a small intentional spin about the spacecraft’s nadir axis dramatically improves the magnetometer-only attitude estimation performance and enhances filter observability, achieving accuracy comparable to a gyro-augmented system. In the detumbling control studies, both the B-dot law and the MPC algorithm successfully reduced high initial rota- tion rates using only magnetic torques. The results of this work provide a characterization of the ADCS’s performance envelope and environmental sensitivity, and validate that a fully magnetic attitude control approach can reliably stabilize and estimate a nanosatel- lite’s attitude given appropriate orbit conditions and control logic.
La tesi sviluppa e analizza un sistema di determinazione e controllo d’assetto interamente magnetico per nanosatelliti, che utilizza esclusivamente un sensore e attuatori magnetici. Oltre a proporre una soluzione ingegneristica per un ADCS, una parte sig- nificativa del lavoro è dedicata alla modellazione scientifica e alla caratterizzazione delle interazioni geomagnetiche nei processi di stima e controllo dell’assetto. È stato realiz- zato un ambiente di simulazione ad alta fedeltà per implementare un filtro di Kalman esteso moltiplicativo per la stima dell’assetto e per valutare due strategie di detumbling. La ricerca indaga in modo sistematico come il campo magnetico terrestre e i parametri orbitali influenzino l’osservabilità della stima e l’efficacia del controllo. In particolare, le prestazioni dell’ADCS vengono caratterizzate in funzione dell’altitudine, dell’inclinazione orbitale, della velocità angolare e della variabilità del campo geomagnetico. Analisi Monte Carlo e simulazioni parametriche evidenziano una forte dipendenza dell’accuratezza del MEKF dalle condizioni geomagnetiche: a quote più elevate il campo più debole riduce l’osservabilità e la precisione della stima, mentre le orbite quasi equatoriali rappresen- tano la sfida maggiore a causa della scarsa variazione della direzione del campo. Al contrario, le orbite a maggiore inclinazione offrono variazioni più favorevoli, migliorando l’osservabilità e la consistenza della stima. L’imposizione di una piccola rotazione inten- zionale attorno all’asse nadir del satellite migliora sensibilmente le prestazioni della stima e aumenta l’osservabilità del filtro, raggiungendo un’accuratezza paragonabile a quella di un sistema supportato da giroscopi. Negli studi sul controllo di detumbling, sia la legge B- dot sia l’algoritmo MPC hanno ridotto con successo elevate velocità di rotazione iniziali utilizzando unicamente coppie magnetiche. I risultati di questo lavoro forniscono una caratterizzazione del dominio prestazionale dell’ADCS e della sua sensibilità ambientale, validando che un approccio interamente magnetico può stabilizzare e stimare in modo affidabile l’assetto di un nanosatellite, a condizione di scegliere opportune configurazioni orbitali e logiche di controllo.
A fully magnetic approach to small scale spacecraft attitude determination and control: modeling and characterization of geomagnetic interactions
Bono, Matteo
2024/2025
Abstract
This thesis develops and analyzes a fully magnetic Attitude Determination and Con- trol System for nanosatellites, using only magnetometer sensor measurements and mag- netorquer actuators. In addition to proposing an engineering design for a magnetome- ter–magnetorquer based ADCS, a significant focus is placed on the scientific modeling and characterization of geomagnetic interactions in spacecraft attitude estimation and control. A high-fidelity simulation framework was built to implement a Multiplicative Extended Kalman Filter (MEKF) for attitude estimation and to evaluate two detumbling control strategies. Using this model-based approach, the research systematically investigates how the Earth’s magnetic field environment and orbital parameters affect estimation observ- ability and control effectiveness. In particular, the ADCS performance is characterized as a function of orbit altitude, inclination, satellite angular velocity, and the geomag- netic field variation. Monte Carlo analyses and parametric simulations reveal a strong dependence of the magnetometer-only MEKF accuracy on the geomagnetic conditions: at higher altitudes, the weaker field degrades filter observability and estimation accu- racy, and near-equatorial orbits pose the greatest challenge due to limited field direction variation. On the other hand, higher-inclination orbits provide more favorable magnetic field changes, improving attitude observability and estimation consistency. Notably, im- posing a small intentional spin about the spacecraft’s nadir axis dramatically improves the magnetometer-only attitude estimation performance and enhances filter observability, achieving accuracy comparable to a gyro-augmented system. In the detumbling control studies, both the B-dot law and the MPC algorithm successfully reduced high initial rota- tion rates using only magnetic torques. The results of this work provide a characterization of the ADCS’s performance envelope and environmental sensitivity, and validate that a fully magnetic attitude control approach can reliably stabilize and estimate a nanosatel- lite’s attitude given appropriate orbit conditions and control logic.| File | Dimensione | Formato | |
|---|---|---|---|
|
2025_10_Bono_Tesi_01.pdf
accessibile in internet per tutti
Dimensione
7.27 MB
Formato
Adobe PDF
|
7.27 MB | Adobe PDF | Visualizza/Apri |
|
2025_10_Bono_Executive_Summary_02.pdf
accessibile in internet per tutti
Dimensione
850.24 kB
Formato
Adobe PDF
|
850.24 kB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/243791