Electric Vertical Take-Off and Landing (eVTOL) aircraft represent the forerunners of Advanced Air Mobility (AAM), reshaping the framework of short-range air transportation. Compared to conventional aircraft powered by internal combustion engines, eVTOLs introduce innovative design configurations enabled by electric propulsion systems, which serve as the primary energy source. Lithium-ion batteries or hydrogen fuel cells are installed onboard to meet the power and energy requirements during flight. This shift in design philosophy requires regulatory agencies to develop new eVTOL crashworthiness standards addressing both occupant safety and the potential risks associated with battery thermal runaway events. This thesis presents the initial development of a simulation framework that offers a viable approach for obtaining design-through-analysis insights while ensuring regulatory compliance for eVTOL crashworthiness. Following a state-of-the-art analysis to assess the market requirements, a conceptual fixed-wing tiltrotor demonstrator is developed, supported by a preliminary performance study including operational range and flight duration. Subsequently, a high-fidelity, multi-physics finite element model of the eVTOL is created to evaluate the aircraft crash response and investigate the impact of battery placement in terms of crash safety. Two separate configurations are analyzed: in the first, the pack is installed above the cabin subfloor, while in the second, it is integrated within the wing structure, designed for a controlled detachment during a crash to alleviate the compressive loads on the cabin structure. A conclusive discussion compares the two design choices, highlighting the advantages, disadvantages, and limitations of both configurations. The results obtained provide a solid basis for future studies on eVTOL configurations, battery placement, and parametric analyses of power requirements during different flight phases, while also supporting the development and updating of Energy Storage Systems (ESS) crashworthiness guidelines.
Gli aerei eVTOL (electric Vertical Take-Off and Landing) rappresentano una categoria di velivoli innovativi che sta ponendo le basi per la creazione della Mobilità Aerea Avanzata (AAM), con l'obiettivo di introdurre nuove modalità di trasporto aereo per missioni di corto e cortissimo raggio. Rispetto agli aeromobili tradizionali alimentati da motori a combustione interna, gli eVTOL sono dotati di sistemi a propulsione elettrica alimentati da batterie agli ioni di litio o da celle a combustibile a idrogeno, che garantiscono la potenza e l'energia necessarie in tutte le fasi di volo. Questo cambiamento nella filosofia progettuale rende necessaria l'adozione di nuovi standard di sicurezza in caso di impatto al suolo, considerando sia la protezione degli occupanti sia i potenziali rischi associati a fenomeni di thermal runaway nelle batterie. A seguito di un’analisi di mercato e dello stato dell’arte, è stato progettato un dimostratore tecnologico tiltrotor ad ala fissa, con l'obiettivo di fornire un supporto concreto alla acquisizione di informazioni utili per il design strutturale, garantendo al contempo la conformità agli attuali requisiti normativi di crashworthiness. La fase di progettazione è stata accompagnata da uno studio prestazionale preliminare, comprendente la stima di autonomia operativa e della durata di volo. Completato lo sviluppo CAD, è stato realizzato un modello multifisico ad elementi finiti per analizzare le conseguenze del posizionamento delle batterie in caso di schianto. Sono state considerate due configurazioni distinte: nella prima, il pacco batteria è posizionato sopra il sottopavimento in cabina; nella seconda, è integrato all’interno della struttura alare, progettata per distaccarsi in modo controllato dalla fusoliera in caso di impatto, così da ridurre i carichi compressivi trasmessi in cabina. In conclusione, le due configurazioni progettuali vengono confrontate, evidenziandone vantaggi, svantaggi e limiti. I risultati ottenuti offrono una base per futuri studi sulla progettazione degli eVTOL, dall'ottimizzazione del posizionamento delle batterie ad analisi parametriche della potenza nelle diverse fasi di volo, oltre a contribuire all’aggiornamento delle normative sulla crashworthiness dei Sistemi di Stoccaggio Energetico (ESS).
A multi-physics finite element model for eVTOL crashworthiness: a comparative study on subfloor versus wing battery placement configurations
Riva, Luca
2024/2025
Abstract
Electric Vertical Take-Off and Landing (eVTOL) aircraft represent the forerunners of Advanced Air Mobility (AAM), reshaping the framework of short-range air transportation. Compared to conventional aircraft powered by internal combustion engines, eVTOLs introduce innovative design configurations enabled by electric propulsion systems, which serve as the primary energy source. Lithium-ion batteries or hydrogen fuel cells are installed onboard to meet the power and energy requirements during flight. This shift in design philosophy requires regulatory agencies to develop new eVTOL crashworthiness standards addressing both occupant safety and the potential risks associated with battery thermal runaway events. This thesis presents the initial development of a simulation framework that offers a viable approach for obtaining design-through-analysis insights while ensuring regulatory compliance for eVTOL crashworthiness. Following a state-of-the-art analysis to assess the market requirements, a conceptual fixed-wing tiltrotor demonstrator is developed, supported by a preliminary performance study including operational range and flight duration. Subsequently, a high-fidelity, multi-physics finite element model of the eVTOL is created to evaluate the aircraft crash response and investigate the impact of battery placement in terms of crash safety. Two separate configurations are analyzed: in the first, the pack is installed above the cabin subfloor, while in the second, it is integrated within the wing structure, designed for a controlled detachment during a crash to alleviate the compressive loads on the cabin structure. A conclusive discussion compares the two design choices, highlighting the advantages, disadvantages, and limitations of both configurations. The results obtained provide a solid basis for future studies on eVTOL configurations, battery placement, and parametric analyses of power requirements during different flight phases, while also supporting the development and updating of Energy Storage Systems (ESS) crashworthiness guidelines.| File | Dimensione | Formato | |
|---|---|---|---|
|
2025_10_Riva_Executive_Summary.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: EXECUTIVE SUMMARY
Dimensione
4.58 MB
Formato
Adobe PDF
|
4.58 MB | Adobe PDF | Visualizza/Apri |
|
2025_10_Riva.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: TESI
Dimensione
24.44 MB
Formato
Adobe PDF
|
24.44 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/243809