This thesis focuses on the study of cooling channels manufactured by Additive Manufacturing (AM). This technology provides a high degree of design freedom, enabling new optimization possibilities for heat exchangers and turbomachinery components. However, the anisotropic surface roughness typical of the AM printing process strongly influences flow dynamics and thermal performance, making the development of specific predictive correlations necessary. The aim of this work is to experimentally investigate the influence of the Prandtl number on heat transfer, with water as the cooling fluid, in cylindrical channels manufactured using the most widely adopted additive manufacturing technique for metals, Laser Powder Bed Fusion (LPBF). Tests were conducted on a smooth reference channel, for validation purposes, and on two additively manufactured test objects with different hydraulic diameters. The results confirm that the experimental rig can reproduce classical correlations for the turbulent regime, both for pressure drop and heat transfer, for the smooth test object. Analyses on the AM-printed cooling channels show that an increase in the Prandtl number does not always lead to an increase in heat transfer, in contrast with classical theory. To capture this effect, a new correlation is proposed based on the experimental data of the two tested cooling channels. This work therefore represents a first step in the prediction and understanding of this new phenomenon, and further investigations are necessary.
Questa tesi si concentra sullo studio di canali di raffreddamento realizzati mediante Additive Manufacturing (AM). Tale tecnologia offre un elevato grado di libertà progettuale, permettendo l'ottimizzazione di scambiatori di calore e componenti di turbomacchine impossibili da realizzare con tecniche convenzionali. La rugosità superficiale anisotropa, causata dal processo di stampa, influenza però in modo significativo la dinamica del flusso e le prestazioni termiche, rendendo quindi necessario lo sviluppo di specifiche correlazioni. L’obiettivo di questo lavoro è indagare sperimentalmente l’influenza del numero di Prandtl sul trasferimento di calore, utilizzando come fluido di raffreddamento l’acqua, in canali realizzati utilizzando la tecnica di additive manufacturing per metalli più diffusa, la Laser Powder Bed Fusion (LPBF). Sono state condotte prove su un canale di riferimento liscio, a scopo di validazione, e su due provini realizzati in additive manufacturing , con diversi diametri idraulici. I risultati confermano che il banco prova è in grado di riprodurre le correlazioni classiche per il regime turbolento nel provino liscio, sia per quanto riguarda la perdita di carico che per il trasferimento di calore. Le analisi sui canali di raffreddamento stampati in AM mostrano che un aumento del numero di Prandtl non porta sempre a un incremento del trasferimento di calore, in contrasto con la teoria classica. Per descrivere questo effetto è stata proposta una nuova correlazione basata sui dati sperimentali dei due canali di raffreddamento testati. Questo lavoro rappresenta solo un primo passo nella comprensione di questo nuovo fenomeno e ulteriori indagini sono necessarie.
Prandtl ffects in AM cooling channels
MOSER, GABRIELE
2024/2025
Abstract
This thesis focuses on the study of cooling channels manufactured by Additive Manufacturing (AM). This technology provides a high degree of design freedom, enabling new optimization possibilities for heat exchangers and turbomachinery components. However, the anisotropic surface roughness typical of the AM printing process strongly influences flow dynamics and thermal performance, making the development of specific predictive correlations necessary. The aim of this work is to experimentally investigate the influence of the Prandtl number on heat transfer, with water as the cooling fluid, in cylindrical channels manufactured using the most widely adopted additive manufacturing technique for metals, Laser Powder Bed Fusion (LPBF). Tests were conducted on a smooth reference channel, for validation purposes, and on two additively manufactured test objects with different hydraulic diameters. The results confirm that the experimental rig can reproduce classical correlations for the turbulent regime, both for pressure drop and heat transfer, for the smooth test object. Analyses on the AM-printed cooling channels show that an increase in the Prandtl number does not always lead to an increase in heat transfer, in contrast with classical theory. To capture this effect, a new correlation is proposed based on the experimental data of the two tested cooling channels. This work therefore represents a first step in the prediction and understanding of this new phenomenon, and further investigations are necessary.| File | Dimensione | Formato | |
|---|---|---|---|
|
2025_10_Moser_Tesi_1.pdf
accessibile in internet per tutti
Descrizione: Testo della Tesi
Dimensione
8.35 MB
Formato
Adobe PDF
|
8.35 MB | Adobe PDF | Visualizza/Apri |
|
2025_10_Moser_Executive_Summary_2.pdf
accessibile in internet per tutti
Descrizione: Executive Summary
Dimensione
3.81 MB
Formato
Adobe PDF
|
3.81 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/243812