The investigation of ultrafast processes has become a fundamental research topic of modern physics: both molecular and electronic dynamics have been successfully studied in time-resolved experiments over the last few years thanks to constant development in laser technologies. With the current commercial laser systems, it is possible to achieve laser pulses in the near infrared (NIR) spectral range with temporal durations ranging from few tens to few hundreds of femtoseconds. However, many experiments require a finer temporal resolution, which can be reached thanks to pulse post-compression techniques. Most of these techniques are based on spectral broadening induced by non-linear effects, then followed by dispersion compensation. This thesis focuses on the development and characterization of a multi-pass cell for post-compression of Ti:Sapphire laser pulses, whose central wavelength lies at 800 nm. Multi-pass cells are optical cavities constituted by two end mirrors between which a non-linear medium is placed: by bouncing multiple times through such medium, the laser pulses are spectrally broadened, and dispersion compensation then allows to compress them. While multi-pass cells are typically employed with Yb-doped laser systems operating at 1030 nm, their use with amplified Ti:Sapphire laser systems is still very limited. During this thesis work, multiple geometries were designed and experimentally analyzed: for each system, the characterization in terms of spatial mode, spectral broadening and temporal compression is reported. The obtained results, compared with the simulations provided by a home-made 1D model, are used to highlight the advantages and drawbacks of the different configurations.
L'investigazione dei processi ultraveloci è diventata un ambito di ricerca fondamentale nella fisica moderna: negli ultimi anni, grazie al costante sviluppo di tecnologie laser, le dinamiche sia molecolari che elettroniche sono state analizzate con successo con esperimenti risolti in tempo. Con i sistemi laser attuali, è possibile ottenere impulsi laser nel vicino infrarosso (NIR) con una durata temporale che varia da decine a centinaia di femtosecondi. Tuttavia, molti esperimenti richiedono una più fine risoluzione temporale, che può essere raggiunta grazie alle tecniche di post-compressione degli impulsi. La maggior parte di queste tecniche si basano sull'allargamento spettrale indotto da effetti non lineari, poi seguito da compensazione della dispersione. Questa tesi è focalizzata sullo sviluppo e la caratterizzazione di una cella multi-passo per post-compressione di impulsi di laser Ti:Zaffiro, la cui lunghezza d'onda centrale è 800 nm. Le celle multi-passo sono cavità ottiche costituite da due specchi terminali tra i quali è posizionato un mezzo non lineare: propagando molteplici volte in tale mezzo, lo spettro degli impulsi laser viene allargato, e la compensazione della dispersione accumulata permette poi di comprimere tali impulsi. Nonostante le celle multi-passo siano tipicamente utilizzate con laser a itterbio che emettono a 1030 nm, il loro utilizzo con laser Ti:Zaffiro amplificati è ancora molto limitato. Nel corso di questa tesi, sono state progettate e analizzate sperimentalmente molteplici geometrie: per ogni sistema, si riporta la caratterizzazione in termini di modo spaziale, allargamento spettrale e compressione temporale. Con i risultati ottenuti, poi paragonati con quelli forniti da simulazioni autoprodotte basate su un modello monodimensionale, si evidenziano i vantaggi e le criticità delle diverse configurazioni.
Design and implementation of a bulk multi-pass cell for post-compression of Ti:Sapphire laser pulses
Iori, Lorenzo
2024/2025
Abstract
The investigation of ultrafast processes has become a fundamental research topic of modern physics: both molecular and electronic dynamics have been successfully studied in time-resolved experiments over the last few years thanks to constant development in laser technologies. With the current commercial laser systems, it is possible to achieve laser pulses in the near infrared (NIR) spectral range with temporal durations ranging from few tens to few hundreds of femtoseconds. However, many experiments require a finer temporal resolution, which can be reached thanks to pulse post-compression techniques. Most of these techniques are based on spectral broadening induced by non-linear effects, then followed by dispersion compensation. This thesis focuses on the development and characterization of a multi-pass cell for post-compression of Ti:Sapphire laser pulses, whose central wavelength lies at 800 nm. Multi-pass cells are optical cavities constituted by two end mirrors between which a non-linear medium is placed: by bouncing multiple times through such medium, the laser pulses are spectrally broadened, and dispersion compensation then allows to compress them. While multi-pass cells are typically employed with Yb-doped laser systems operating at 1030 nm, their use with amplified Ti:Sapphire laser systems is still very limited. During this thesis work, multiple geometries were designed and experimentally analyzed: for each system, the characterization in terms of spatial mode, spectral broadening and temporal compression is reported. The obtained results, compared with the simulations provided by a home-made 1D model, are used to highlight the advantages and drawbacks of the different configurations.| File | Dimensione | Formato | |
|---|---|---|---|
|
2025_10_Iori_Tesi_01.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Testo tesi
Dimensione
4.03 MB
Formato
Adobe PDF
|
4.03 MB | Adobe PDF | Visualizza/Apri |
|
2025_10_Iori_Executive Summary_02.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Executive summary
Dimensione
814.38 kB
Formato
Adobe PDF
|
814.38 kB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/243834