Abstract: Ocean wave energy represents an omnipresent yet underutilized power source for small-scale autonomous underwater vehicles, which currently face severe operational constraints due to battery limitations restricting missions to 8–24 hours. This thesis presents a paradigm shift in marine robotics through the development of a wave-powered soft roboticeel that directly converts ocean wave energy into biomimetic propulsion without intermediate energy storage or conversion systems. The key innovation exploits the natural frequency alignment between ocean waves (1–10 Hz) and anguilliform swimming patterns (1–3 Hz), enabling direct mechanical coupling between environmental energy and locomotion. The system integrates three novel elements: (1) vacuum-actuated soft body segments fabricated via 3D printing with FEM-modeled design and characterized pressure–angle response, (2) a Kresling-pattern origami pump achieving 400 mL volumetric displacement combined with a directionally asymmetric heave plate that reduces drag by 90% during reset phases, and (3) passive fluidic gates generating sequential actuation. The design process combined laboratory experimentation with computational modeling: a discrete flow model guided the development of sequencing gates, which were then experimentally implemented and validated. The optimized design achieved a 235% thrust improvement through setpoint shifting and doubled thrust with properly sequenced actuation compared to the synchronous baseline. Field validation at Cayuga Lake confirmed successful anguilliform locomotion under natural wave conditions, achieving a peak velocity of ∼5 cm/s, corresponding to 0.05–0.15 body lengths per wave cycle (T = 3 s). This work establishes the feasibility of indefinite-duration ocean monitoring through direct environmental energy utilization, enabling persistent, silent marine observation for ecosystem and environmental monitoring applications.
L’energia ondosa oceanica rappresenta una fonte onnipresente ma sottoutilizzata per i veicoli subacquei autonomi di piccola scala, che attualmente affrontano vincoli operativi a causa delle limitazioni delle batterie che riducono le missioni a 8–24 ore. Questa tesi propone un cambiamento di paradigma nella robotica marina con lo sviluppo di un’anguilla robotica soffice alimentata dalle onde, capace di convertire direttamente l’energia ondosa in propulsione biomimetica senza sistemi intermedi di accumulo o conversione. L’innovazione chiave sfrutta l’allineamento naturale tra le frequenze delle onde oceaniche (1–10 Hz) e i pattern di nuoto anguilliforme (1–3 Hz), consentendo un accoppiamento meccanico diretto tra energia ambientale e locomozione. Il sistema integra tre elementi principali: (1) segmenti corporei soffici azionati a vuoto, realizzati tramite stampa 3D con progettazione FEM e caratterizzati dalla risposta pressione–angolo; (2) una pompa origami a pattern Kresling capace di 400 mL di spostamento volumetrico e 150% di estensione, combinata con una piastra di resistenza direzionale che riduce del 90% la resistenza durante le fasi di reset; e (3) valvole fluidiche passive che generano attuazione sequenziale. Il processo di progettazione ha unito sperimentazione in laboratorio e modellazione: un modello di flusso discreto ha guidato lo sviluppo delle valvole di sequenziamento, poi implementate e validate sperimentalmente. Il design ottimizzato ha ottenuto un aumento della spinta del 235% tramite setpoint shifting e un raddoppio della spinta con attuazione correttamente sequenziata rispetto alla condizione sincrona. La validazione in campo, nel lago Cayuga, ha confermato la locomozione anguilliforme sotto onde naturali, raggiungendo circa 5 cm/s, pari a 0.05–0.15 lunghezze corporee per ciclo (T = 3 s). Questo lavoro dimostra la fattibilità di un monitoraggio oceanico di durata indefinita tramite utilizzo diretto dell’energia ambientale, abilitando un’osservazione marina persistente e silenziosa per applicazioni ecosistemiche e ambientali.
Direct wave-to-motion conversion for soft robotic anguilliform propulsion
ULEMAN, ALEXANDER
2025/2026
Abstract
Abstract: Ocean wave energy represents an omnipresent yet underutilized power source for small-scale autonomous underwater vehicles, which currently face severe operational constraints due to battery limitations restricting missions to 8–24 hours. This thesis presents a paradigm shift in marine robotics through the development of a wave-powered soft roboticeel that directly converts ocean wave energy into biomimetic propulsion without intermediate energy storage or conversion systems. The key innovation exploits the natural frequency alignment between ocean waves (1–10 Hz) and anguilliform swimming patterns (1–3 Hz), enabling direct mechanical coupling between environmental energy and locomotion. The system integrates three novel elements: (1) vacuum-actuated soft body segments fabricated via 3D printing with FEM-modeled design and characterized pressure–angle response, (2) a Kresling-pattern origami pump achieving 400 mL volumetric displacement combined with a directionally asymmetric heave plate that reduces drag by 90% during reset phases, and (3) passive fluidic gates generating sequential actuation. The design process combined laboratory experimentation with computational modeling: a discrete flow model guided the development of sequencing gates, which were then experimentally implemented and validated. The optimized design achieved a 235% thrust improvement through setpoint shifting and doubled thrust with properly sequenced actuation compared to the synchronous baseline. Field validation at Cayuga Lake confirmed successful anguilliform locomotion under natural wave conditions, achieving a peak velocity of ∼5 cm/s, corresponding to 0.05–0.15 body lengths per wave cycle (T = 3 s). This work establishes the feasibility of indefinite-duration ocean monitoring through direct environmental energy utilization, enabling persistent, silent marine observation for ecosystem and environmental monitoring applications.| File | Dimensione | Formato | |
|---|---|---|---|
|
Alexander_Uleman_Article_Format_Thesis_23_09_25.pdf
accessibile in internet per tutti a partire dal 23/09/2026
Descrizione: Master Thesis
Dimensione
20.09 MB
Formato
Adobe PDF
|
20.09 MB | Adobe PDF | Visualizza/Apri |
|
Alexander_Uleman_Thesis_Executive_Summary_23_09_25.pdf
accessibile in internet per tutti a partire dal 23/09/2026
Descrizione: Executive Summary
Dimensione
1.16 MB
Formato
Adobe PDF
|
1.16 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/243842