Aortic diseases, particularly thoracic aortic aneurysms (TAA), represent a major cause of cardiovascular morbidity and mortality. An etiologic pharmacological TAA treatment is still lacking, due to an incomplete understanding of pathogenic mechanisms. Currently, the only effective therapeutic approach for TAA relies on high-risk surgical aortic replacement with synthetic grafts. One of the major issues in the study of TAA is the pathology modelling. Indeed, in the canonical 2D in vitro cell cultures, the contribution of all cell types in the peculiar aortic extracellular matrix (ECM) context is missing. Furthermore, the in vivo animal models poorly replicate complex human pathologic mechanisms and phenotypes. All these issues, together with ethical concerns about the use of animal in biomedical research, emphasize the scientific need to develop novel advanced in vitro models. This thesis will focus on the development of an advanced in vitro model that could mimic the complex micro-environment of the thoracic aorta. The TToP (True Tissue on Platform), a bicompartmental culture system, will be employed for the purpose. Specifically, its design will be adapted to accommodate of human aortic decellularized ECM slices. Preliminary tests to validate the reliability and reproducibility of the model will be conducted. Subsequently, recellularization of the aortic samples will be attempted. Several parameters, such as cell lines, times, and the addition of chemoattractant in the basal medium, will be tested in order to identify the best strategy. Finally, the overall performance of the recellularized platform will be further evaluated with targeted assays to investigate its capacity in recapitulating the physiological micro-environment of the aortic vessel. This model could serve as a novel platform for studying disease mechanisms and testing potential pharmacological treatments for TAA.
Le patologie aortiche, in particolare l’aneurisma dell’aorta toracica (AAT), rappresentano una delle cause principali di mortalità e morbidità. Ad oggi, ancora manca un trattamento eziologico farmacologico, a causa di una comprensione incompleta dei meccanismi patogenici. Attualmente, l’unico approccio terapeutico efficacie per l’aneurisma dell’aorta toracica prevede la sostituzione chirurgica dell’aorta con innesti sintetici. Uno dei problemi principali nello studio dell’AAT è il modellamento della patologia. Infatti, nei modelli di cultura in vitro 2D canonici, manca il contributo di tutti i tipi cellulari nel contesto peculiare della matrice extracellulare (ECM). Inoltre, i modelli in vivo replicano debolmente i complessi meccanismi e fenotipi patologici umani. Tutte queste problematiche, insieme alle limitazioni etiche sull’uso animale nella ricerca biomedica, enfatizzano la necessità di sviluppare nuovi modelli in vitro avanzati. La tesi si focalizzerà sullo sviluppo di un modello in vitro avanzato che possa ricapitolare il complesso microambiente dell’aorta toracica. Il TToP (True Tissue on Platform), un sistema di coltura bicompartimentale, sarà utilizzato per lo scopo. In particolare, il suo design verrà adattato per alloggiare slice di ECM aortica decellularizzata umana. Verranno condotti dei test preliminari per valutare l’affidabilità e la riproducibilità del modello. Successivamente, verranno fatti tentativi di ricellularizzazione dei campioni aortici. Verranno testati diversi parametri, come tipi cellulari, tempistiche, e l’introduzione di un chemo attrattore nel mezzo basale, al fine di identificare la strategia migliore. Infine, verrà valutata la performance complessiva della piattaforma ricellularizzata con saggi dedicati, al fine di investigare la sua capacità nel mimare il microambiente fisiologico del vaso aortico. Questo modello potrebbe servire come una nuova piattaforma per studiare i meccanismi patologici e per valutare potenziali trattamenti farmacologici per l’aneurisma dell’aorta toracica.
Development and characterization of advanced in vitro models of thoracic aorta integrating decellularized matrices within a bicompartmental culture platform
Di Marco, Benedetta
2024/2025
Abstract
Aortic diseases, particularly thoracic aortic aneurysms (TAA), represent a major cause of cardiovascular morbidity and mortality. An etiologic pharmacological TAA treatment is still lacking, due to an incomplete understanding of pathogenic mechanisms. Currently, the only effective therapeutic approach for TAA relies on high-risk surgical aortic replacement with synthetic grafts. One of the major issues in the study of TAA is the pathology modelling. Indeed, in the canonical 2D in vitro cell cultures, the contribution of all cell types in the peculiar aortic extracellular matrix (ECM) context is missing. Furthermore, the in vivo animal models poorly replicate complex human pathologic mechanisms and phenotypes. All these issues, together with ethical concerns about the use of animal in biomedical research, emphasize the scientific need to develop novel advanced in vitro models. This thesis will focus on the development of an advanced in vitro model that could mimic the complex micro-environment of the thoracic aorta. The TToP (True Tissue on Platform), a bicompartmental culture system, will be employed for the purpose. Specifically, its design will be adapted to accommodate of human aortic decellularized ECM slices. Preliminary tests to validate the reliability and reproducibility of the model will be conducted. Subsequently, recellularization of the aortic samples will be attempted. Several parameters, such as cell lines, times, and the addition of chemoattractant in the basal medium, will be tested in order to identify the best strategy. Finally, the overall performance of the recellularized platform will be further evaluated with targeted assays to investigate its capacity in recapitulating the physiological micro-environment of the aortic vessel. This model could serve as a novel platform for studying disease mechanisms and testing potential pharmacological treatments for TAA.| File | Dimensione | Formato | |
|---|---|---|---|
|
2025_10_Di Marco_Tesi_01.pdf
non accessibile
Dimensione
5.34 MB
Formato
Adobe PDF
|
5.34 MB | Adobe PDF | Visualizza/Apri |
|
2025_10_Di Marco_Executive Summary_02.pdf
non accessibile
Dimensione
1.07 MB
Formato
Adobe PDF
|
1.07 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/243862