In critical environments where aseptic conditions must be ensured, unidirectional airflow plays a key role in maintaining sterility. In this study, the airflow field inside a pharmaceutical isolator was analyzed using flow visualization techniques and computer vision algorithms. Smoke was employed as a tracer, introduced into the isolator and modulated by a specifically developed device, the Smoke Instability Generator, which significantly improved the effectiveness of image processing. The impact of the robotic arm’s movement on the airflow velocity distribution was investigated as a function of the imposed trajectory. The objective was to identify regions where the sterilizing effect of the airflow was compromised. The Smoke Image Velocimetry (SIV) technique was used to extract the velocity field from pairs of frames acquired with an industrial camera at a known time interval. The acquisition system was synchronized with the robot’s real-time tracked position, enabling multiple datasets to be acquired for the same position of interest along the trajectory. These datasets were then averaged to obtain more robust velocity fields. For a test condition corresponding to an air velocity of 0.145~m/s, the absolute velocity estimation error was found to be 0.0142~m/s. Finally, quantitative indices were introduced and validated to objectively identify regions of the domain where the flow was disturbed by the robot’s movement.
In ambienti critici in cui deve essere garantita l’asetticità, i flussi d’aria unidirezionali rappresentano un elemento fondamentale per mantenere condizioni sterili. In questo studio, il campo di moto all’interno di un isolatore farmaceutico è stato analizzato mediante tecniche di visualizzazione del flusso e algoritmi di visione artificiale. È stato impiegato del fumo come tracciante, introdotto nell’isolatore e reso intermittente tramite un dispositivo appositamente sviluppato, denominato Smoke Instability Generator, che ha aumentato significativamente l'efficacia dell’elaborazione delle immagini. Si è poi studiato l'impatto del movimento di un braccio robotico sulla distribuzione di velocità dell'aria in funzione della traiettoria imposta. L'obiettivo era identificare le zone in cui l'effetto sterilizzante del flusso d'aria è compromesso. La tecnica della Smoke Image Velocimetry (SIV) è stata utilizzata per ricavare il campo di moto a partire da due frames acquisiti con una fotocamera industriale a un noto intervallo di tempo. Il sistema di acquisizione è stato sincronizzato con la posizione del robot tracciata in tempo reale. Questa sincronizzazione ha permesso di acquisire più dati riguardanti una determinata posizione di interesse lungo la traiettoria e, successivamente, mediare i campi di moto così ottenuti, per ottenere risultati più robusti. L’errore assoluto nella stima della velocità per una condizione di test pari a 0.145 m/s è risultato di 0.0142 m/s. Infine, sono stati introdotti e validati degli indici quantitativi per identificare in modo oggettivo le regioni del dominio in cui il flusso risulta perturbato dal movimento robotico.
Vision-based measurement system for the analysis of airflow perturbations in pharmaceutical isolator
BEDODI, MICHELE;APRIGLIANO, DAVIDE
2024/2025
Abstract
In critical environments where aseptic conditions must be ensured, unidirectional airflow plays a key role in maintaining sterility. In this study, the airflow field inside a pharmaceutical isolator was analyzed using flow visualization techniques and computer vision algorithms. Smoke was employed as a tracer, introduced into the isolator and modulated by a specifically developed device, the Smoke Instability Generator, which significantly improved the effectiveness of image processing. The impact of the robotic arm’s movement on the airflow velocity distribution was investigated as a function of the imposed trajectory. The objective was to identify regions where the sterilizing effect of the airflow was compromised. The Smoke Image Velocimetry (SIV) technique was used to extract the velocity field from pairs of frames acquired with an industrial camera at a known time interval. The acquisition system was synchronized with the robot’s real-time tracked position, enabling multiple datasets to be acquired for the same position of interest along the trajectory. These datasets were then averaged to obtain more robust velocity fields. For a test condition corresponding to an air velocity of 0.145~m/s, the absolute velocity estimation error was found to be 0.0142~m/s. Finally, quantitative indices were introduced and validated to objectively identify regions of the domain where the flow was disturbed by the robot’s movement.| File | Dimensione | Formato | |
|---|---|---|---|
|
2025_10_Bedodi_Executive_Summary.pdf
non accessibile
Descrizione: executive summary
Dimensione
24.67 MB
Formato
Adobe PDF
|
24.67 MB | Adobe PDF | Visualizza/Apri |
|
2025_10_Bedodi_Tesi.pdf
non accessibile
Descrizione: testo tesi
Dimensione
68.39 MB
Formato
Adobe PDF
|
68.39 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/243876