High Performance Computing (HPC) is a fundamental tool for addressing some of the most demanding scientific and engineering challenges of our time. Optimizing these HPC systems requires a delicate balance between solution quality and computational throughput. However, current optimization methods generally require lengthy manual tuning, or they fail to adequately exploit the extensive parallelism of HPC. Since function evaluations in such environments are often expensive and time-consuming, innovative optimization techniques that are scalable and capable of rapidly exploring complex limited discrete configuration spaces are essential. This thesis introduces the ABC Hybrid Suite (ABC-HS), a scalable framework that extends the Artificial Bee Colony (ABC) algorithm for constrained, discrete optimization in HPC environments. ABC-HS combines three advanced variants to overcome the limitations of the original ABC algorithm, which was designed for unconstrained continuous problems. First, ABC Machine Learning for Constrained Optimization (ABC-MLCO) enhances the algorithm with memory-based surrogate models and Lévy-flight exploration to navigate black-box constraints. Second, ABC Asynchronous Machine Learning and Optimization (ABC-AMLO) upgrades ABC-MLCO by implementing a fully asynchronous event-driven execution logic that eliminates synchronization barriers, allowing to initiate new tasks immediately as soon as resources are available. Finally, introducing probabilistically integrated Bayesian Optimization (BO) to refine promising regions during the late stages. The effectiveness of the proposed algorithms is validated using standard benchmark functions and a real-world auto-tuning campaign applied to LiGen, a molecular docking application within the EXSCALATE virtual screening platform. On benchmarks, ABC-MLCO reduced mean average percent regret (MAPR) by 27–93% compared to standard ABC. In the LiGen study, ABC-AMLO outperformed EMaliboo and OpenTuner by up to 85% in MAPR. The experimental results show that ABC-HS significantly surpasses alternative state-of-the-art methods, achieving superior performance in navigating complex multidimensional search spaces while respecting critical constraints.
Il High Performance Computing (HPC) è uno strumento fondamentale per affrontare alcune delle sfide scientifiche e ingegneristiche più impegnative dei nostri tempi. L'ottimizzazione di questi sistemi richiede un delicato equilibrio tra la qualità della soluzione e la capacità di trasmissione computazionale. Tuttavia, gli attuali metodi di ottimizzazione richiedono generalmente una lunga regolazione manuale, inoltre spesso non sono in grado di sfruttare adeguatamente l'ampio parallelismo dei sistemi HPC. Poiché le valutazioni delle funzioni in tali ambienti sono spesso costose e richiedono molto tempo, sono quindi essenziali tecniche di ottimizzazione innovative che siano scalabili e in grado di esplorare rapidamente spazi di configurazione discretamente complessi e limitati. Questa tesi introduce la ABC Hybrid Suite (ABC-HS), un framework scalabile che estende l'algoritmo Artificial Bee Colony (ABC) verso l'ottimizzazione discreta e vincolata in ambienti HPC. ABC-HS combina tre varianti avanzate per superare i limiti dell'algoritmo ABC originale, progettato per problemi continui senza vincoli. Il primo è ABC Machine Learning for Constrained Optimization (ABC-MLCO) che migliora l'algoritmo tramite modelli machine learning allenati su memoria e l'esplorazione Lévy-flight per navigare i vincoli black-box. In secondo luogo, ABC Asynchronous Machine Learning and Optimization (ABC-AMLO) potenzia ABC-MLCO implementando una logica di esecuzione completamente asincrona e guidata da eventi, che elimina le barriere di sincronizzazione, consentendo di eseguire immediatamente nuove attività non appena le risorse sono disponibili. Infine, l'integrazione probabilistica dell'Ottimizzazione Bayesiana (BO) per raffinare le regioni promettenti durante le fasi finali incapsula il tutto. L'efficacia degli algoritmi proposti è stata convalidata utilizzando funzioni di benchmark standard e una campagna di auto-tuning reale applicata a LiGen, un'applicazione di docking molecolare all'interno della piattaforma di screening virtuale EXSCALATE. Nei benchmark, ABC-MLCO ha ridotto la percentuale dell'errore assoluto medio (MAPR) del 27-93% rispetto all'ABC originale. Nello studio LiGen, ABC-AMLO ha superato EMaliboo e OpenTuner fino all'85% in MAPR. I risultati sperimentali mostrano che ABC-HS supera significativamente i metodi alternativi all'avanguardia, ottenendo prestazioni superiori nella navigazione di spazi di ricerca multidimensionali complessi, nel rispetto dei vincoli più critici.
Hybrid asynchronous artificial bee colony algorithm for constrained optimization in HPC
LITOVCHENKO, NIKITA
2024/2025
Abstract
High Performance Computing (HPC) is a fundamental tool for addressing some of the most demanding scientific and engineering challenges of our time. Optimizing these HPC systems requires a delicate balance between solution quality and computational throughput. However, current optimization methods generally require lengthy manual tuning, or they fail to adequately exploit the extensive parallelism of HPC. Since function evaluations in such environments are often expensive and time-consuming, innovative optimization techniques that are scalable and capable of rapidly exploring complex limited discrete configuration spaces are essential. This thesis introduces the ABC Hybrid Suite (ABC-HS), a scalable framework that extends the Artificial Bee Colony (ABC) algorithm for constrained, discrete optimization in HPC environments. ABC-HS combines three advanced variants to overcome the limitations of the original ABC algorithm, which was designed for unconstrained continuous problems. First, ABC Machine Learning for Constrained Optimization (ABC-MLCO) enhances the algorithm with memory-based surrogate models and Lévy-flight exploration to navigate black-box constraints. Second, ABC Asynchronous Machine Learning and Optimization (ABC-AMLO) upgrades ABC-MLCO by implementing a fully asynchronous event-driven execution logic that eliminates synchronization barriers, allowing to initiate new tasks immediately as soon as resources are available. Finally, introducing probabilistically integrated Bayesian Optimization (BO) to refine promising regions during the late stages. The effectiveness of the proposed algorithms is validated using standard benchmark functions and a real-world auto-tuning campaign applied to LiGen, a molecular docking application within the EXSCALATE virtual screening platform. On benchmarks, ABC-MLCO reduced mean average percent regret (MAPR) by 27–93% compared to standard ABC. In the LiGen study, ABC-AMLO outperformed EMaliboo and OpenTuner by up to 85% in MAPR. The experimental results show that ABC-HS significantly surpasses alternative state-of-the-art methods, achieving superior performance in navigating complex multidimensional search spaces while respecting critical constraints.| File | Dimensione | Formato | |
|---|---|---|---|
|
2025_09_Litovchenko_Tesi.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Tesi
Dimensione
4.96 MB
Formato
Adobe PDF
|
4.96 MB | Adobe PDF | Visualizza/Apri |
|
2025_09_Litovchenko_Executive_Summary.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Executive Summary
Dimensione
584.09 kB
Formato
Adobe PDF
|
584.09 kB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/243894