Optimizing the performance and stability of Anaerobic Digestion (AD) using saline waste waters is crucial for meeting current and future energy demands while ensuring sustainable wastewater management and resource recovery. Salinity represents one of the most critical stressors in AD, often leading to process inhibition with reduced methane yield and destabilized microbial communities. In this context, this research investigates how salinity affects AD and explores mitigation strategies to sustain biogas production in hypersaline environments. The experimental work combined batch biochemical methane potential (BMP) assays and continuous stirred tank reactors (CSTR) operation with mixed sludge (primary and secondary sludge in 50:50 ratio). In BMP tests, 3-7-11-15 bar of osmotic pressure were tested using either NaCl or MgCl2 both with salt adapted and non-adapted inoculum. Results confirmed the inhibitory role of salinity, which intensified proportionally to the increase of osmotic pressure and revealed a clear cation specific effect. Mg2+ exhibited higher inhibition potential than Na+ with longer lag phases and reduced methane yields. Moreover, NaCl-adaptation significantly improved methane recovery especially at the highest osmotic pressure tested, demonstrating that microbial adaptation is a promising strategy to enhance resilience. In contrast, adaptation to MgCl2 did not improve methane yield but reduced lag phase. In CSTRs experiments, different mitigation strategies were compared: gradual salt addition (5 steps to reach 17 gNaCl/L), shock exposure (17 gNaCl/L) and shock exposure combined with dynamic OLR control (25 gNaCl/L). As revealed by results, in gradual and shock addition strategies the implemented salt concentration was not lethal to the microorganisms. Despite the initial inhibition after salt addition, both CSTRs recovered to the original performance before the salt exposure and were able to restore methane yield to baseline levels within weeks. Overall, the outcomes of this study provide theoretical and practical guidance for AD design under salinity stress with positive implications for resource recovery and renewable energy production.
Ottimizzare le prestazioni e la stabilità della digestione anaerobica (AD) in presenza di acque reflue ad elevata salinità è fondamentale per soddisfare le crescenti richieste energetiche e, al contempo, garantire una gestione sostenibile dei reflui e il recupero delle risorse. La salinità rappresenta, infatti, uno dei principali fattori critici nella AD, causando spesso inibizione del processo. In tale scenario, questa ricerca investiga gli effetti della salinità sulla AD ed esplora strategie di mitigazione finalizzate a sostenere la produzione di biogas in contesti ipersalini. L’attività sperimentale ha combinato prove batch di BMP (potenziale biochimico di metano) e prove con reattori CSTR alimentati con fanghi misti (primari e secondari 50:50). Nei BMP test, condotti a 3–7–11–15 bar, con NaCl o MgCl2 su inoculi adattati e non, hanno mostrato un effetto inibitorio crescente con la pressione osmotica e un effetto cationico specifico: Mg2+ è risultato più inibente rispetto a Na+, con rese inferiori e fasi di latenza più prolungate. Inoltre, l’adattamento a NaCl ha migliorato notevolmente il recupero di metano, soprattutto alle pressioni osmotiche più elevate, mostrando come l’adattamento microbico possa rappresentare una strategia promettente per aumentare la resilienza del processo. Al contrario, l’adattamento al MgCl2 non ha migliorato le rese di metano ma ha contribuito a ridurre la fase di latenza. Nei CSTR, 3 diverse strategie di mitigazione sono state confrontate: aggiunta graduale di sale (5 step fino a 17 gNaCl/L), esposizione shock (17 gNaCl/L) ed esposizione shock combinata con il controllo dinamico del carico organico (25 gNaCl/L). Sia con l’aggiunta graduale che con l’esposizione shock, le concentrazioni saline applicate non sono state letali per i microrganismi. Nonostante l’inibizione iniziale, dopo l’aggiunta di sale, entrambi i reattori hanno recuperato le prestazioni originarie fino a ristabilire completamente la resa di metano nell’arco di 1 SRT. Nel complesso, lo studio offre linee guida teoriche e pratiche per progettare sistemi AD ad alta salinità, con benefici ambientali ed energetici.
Strategies to mitigate salinity in Anaerobic Digestion
BURCHIETTI, GIULIA
2024/2025
Abstract
Optimizing the performance and stability of Anaerobic Digestion (AD) using saline waste waters is crucial for meeting current and future energy demands while ensuring sustainable wastewater management and resource recovery. Salinity represents one of the most critical stressors in AD, often leading to process inhibition with reduced methane yield and destabilized microbial communities. In this context, this research investigates how salinity affects AD and explores mitigation strategies to sustain biogas production in hypersaline environments. The experimental work combined batch biochemical methane potential (BMP) assays and continuous stirred tank reactors (CSTR) operation with mixed sludge (primary and secondary sludge in 50:50 ratio). In BMP tests, 3-7-11-15 bar of osmotic pressure were tested using either NaCl or MgCl2 both with salt adapted and non-adapted inoculum. Results confirmed the inhibitory role of salinity, which intensified proportionally to the increase of osmotic pressure and revealed a clear cation specific effect. Mg2+ exhibited higher inhibition potential than Na+ with longer lag phases and reduced methane yields. Moreover, NaCl-adaptation significantly improved methane recovery especially at the highest osmotic pressure tested, demonstrating that microbial adaptation is a promising strategy to enhance resilience. In contrast, adaptation to MgCl2 did not improve methane yield but reduced lag phase. In CSTRs experiments, different mitigation strategies were compared: gradual salt addition (5 steps to reach 17 gNaCl/L), shock exposure (17 gNaCl/L) and shock exposure combined with dynamic OLR control (25 gNaCl/L). As revealed by results, in gradual and shock addition strategies the implemented salt concentration was not lethal to the microorganisms. Despite the initial inhibition after salt addition, both CSTRs recovered to the original performance before the salt exposure and were able to restore methane yield to baseline levels within weeks. Overall, the outcomes of this study provide theoretical and practical guidance for AD design under salinity stress with positive implications for resource recovery and renewable energy production.| File | Dimensione | Formato | |
|---|---|---|---|
|
2025_10_Burchietti.pdf
accessibile in internet per tutti a partire dal 23/09/2026
Descrizione: testo tesi
Dimensione
14.43 MB
Formato
Adobe PDF
|
14.43 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/243899