High Entropy Alloys (HEAs) made out of 4 or more different metal elements with a stoichiometry ranging between 5 and 35 at. %, exhibit remarkable hydrogen sorption properties arising from their intrinsic configurational disorder. To establishing correlations between sorption properties and structural as well as microstructural features, this work applies Transmission Electron Microscopy (TEM) as a major analytical tool, marking its first systematic application to this class of hydrogen storage materials. First, to probe the crystalline structure, Electron Diffraction (ED) and High-Resolution TEM were conducted concomitantly. Furthermore, to localize the hydrogen within the lattice, the application of 3D-Electron Diffraction (3D-ED), an emerging method that exploits the strengths of ED while reducing its principal drawback, multiple scattering, was considered. The nominal alloy composition in this study was Ti25V35Cr32Mn8. Directly after synthesis, the material proved to be nanocrystalline. Subsequent activations promoted partial single-crystal formation; though, the elevated mosaicity prevented unfortunately 3D-ED data acquisition. Microstructural heterogeneity was highlighted, with amorphous pockets within crystalline domains. Samples were subjected to diverse hydridation states, revealing a lattice transformation from a = 3.1˚A Body-Centered Cubic to a = 4.3˚A Face-Centered Cubic, a structural transition whose interpretation was compared to complementary insights from Powder X-ray Diffraction (PXRD) analyses. The HEAs TEM-based investigations proved to be promising. However, optimization through thermal annealing, as well as the exploration of related compositions remain necessary.
Le High Entropy Alloys (HEA) sono costituite da 4 o più elementi metallici diversi con una stechiometria compresa tra il 5 e il 35% atomico. Presentano notevoli proprietà di assorbimento dell'idrogeno derivanti dal loro intrinseco disordine configurazionale. Per trovare correlazioni tra le proprietà di assorbimento e le caratteristiche strutturali e microstrutturali, questo lavoro utilizza la microscopia elettronica a trasmissione (MET). Questo e la sua prima applicazione sistematica a questa classe di materiali per lo stoccaggio dell'idrogeno. In primo luogo, per analizzare la struttura cristallina, sono stati condotti contemporaneamente la diffrazione elettronica (DE) e la MET ad alta risoluzione. Inoltre, per localizzare l'idrogeno all'interno del reticolo, è stata presa in considerazione l'applicazione della diffrazione elettronica 3D (3D-DE). Questa e un metodo emergente che sfrutta i punti di forza dell'ED e che riduce al contempo il principale svantaggio, la diffusione multipla. La composizione nominale del HEA in questo studio era Ti25V35Cr32Mn8. Subito dopo la sintesi, il materiale si è rivelato nano-cristallino. Le successive attivazioni hanno favorito la formazione di cristalli singoli. Tuttavia, l'elevata mosaicità ha purtroppo impedito l'acquisizione de dati per la 3D-ED. È stata evidenziata l'eterogeneità microstrutturale, con sacche amorfe all'interno dei domini cristallini. I HEAs sono stati sottoposti a diversi stati di idridazione, rivelando una trasformazione del reticolo da cubico a corpo centratocon a = 3,1˚A a cubico a facce centrate con a = 4,3˚A. La interpretazione de questa transizione strutturale è stata confrontata con l’analisi di diffrazione dei raggi X su polveri.
Structural study of hydrogen-storing High Entropy Alloys via Transmission Electron Microscopy
RAYNAL, ANTONIN GAEL
2024/2025
Abstract
High Entropy Alloys (HEAs) made out of 4 or more different metal elements with a stoichiometry ranging between 5 and 35 at. %, exhibit remarkable hydrogen sorption properties arising from their intrinsic configurational disorder. To establishing correlations between sorption properties and structural as well as microstructural features, this work applies Transmission Electron Microscopy (TEM) as a major analytical tool, marking its first systematic application to this class of hydrogen storage materials. First, to probe the crystalline structure, Electron Diffraction (ED) and High-Resolution TEM were conducted concomitantly. Furthermore, to localize the hydrogen within the lattice, the application of 3D-Electron Diffraction (3D-ED), an emerging method that exploits the strengths of ED while reducing its principal drawback, multiple scattering, was considered. The nominal alloy composition in this study was Ti25V35Cr32Mn8. Directly after synthesis, the material proved to be nanocrystalline. Subsequent activations promoted partial single-crystal formation; though, the elevated mosaicity prevented unfortunately 3D-ED data acquisition. Microstructural heterogeneity was highlighted, with amorphous pockets within crystalline domains. Samples were subjected to diverse hydridation states, revealing a lattice transformation from a = 3.1˚A Body-Centered Cubic to a = 4.3˚A Face-Centered Cubic, a structural transition whose interpretation was compared to complementary insights from Powder X-ray Diffraction (PXRD) analyses. The HEAs TEM-based investigations proved to be promising. However, optimization through thermal annealing, as well as the exploration of related compositions remain necessary.| File | Dimensione | Formato | |
|---|---|---|---|
|
2025_10_RAYNAL_Thesis.pdf
accessibile in internet per tutti
Descrizione: Thesis
Dimensione
64.75 MB
Formato
Adobe PDF
|
64.75 MB | Adobe PDF | Visualizza/Apri |
|
2025_10_RAYNAL_Executive_Summary.pdf
accessibile in internet per tutti
Descrizione: Executive Summary
Dimensione
4.38 MB
Formato
Adobe PDF
|
4.38 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/243915