Runaway electrons are highly energetic particles produced during critical disruption events in tokamaks, such as WEST, in which they typically reach energies between 10 and 20 MeV. Upon striking internal surfaces - especially the divertor, which absorbs the particle and heat flux in the machine - these electrons can activate tungsten, causing significant radiological concerns and practical issues for maintenance and safety. The interaction of runaway electrons with the divertor results in intense energy deposition, leading to material damage such as melting, crack formation, and severe thermal, mechanical, and radiological problems for plasma-facing components. Experimental evidence shows that the trajectories of runaway electrons are strongly guided by the toroidal magnetic field inside the vacuum chamber, resulting in low impact angles (around 2°) A monoenergetic 15 MeV beam approximation is demonstrated to be a consistent approach in WEST for modeling their effects. These electrons can induce photonuclear reactions such as 182W(X,n')181W generating radioactive tungsten isotopes. In this work, the phenomenon was simulated using the TRIPOLI-4 Monte Carlo code, developed at CEA, considering four representative impact angles (5°,15°,45°,85°) to capture a discrete angular distribution of the electron source. A new computational model was developed, and a minimization procedure was employed to compare simulation results to those obtained from the C7 2023 experimental campaign performed at WEST. The simulation results exhibited consistent agreement for the measured photon current distribution in depth, corroborating the validity of the low-angle, monoenergetic beam assumption for runaway electrons in this context. A cross-validation with the GEANT4 Monte Carlo code further confirmed the reliability of this modeling approach and paves the way for future studies that will include magnetic field effects. It should be noted that a precise description of the phenomenon - and especially of the experimental setup - is essential, since the measured photon emission from the divertor depends strongly on experimental conditions, geometry, and incident particle parameters. These findings represent an important contribution towards understanding and mitigating the operational risks posed by runaway electron interactions in present and future tokamaks.
Gli elettroni runaway sono particelle altamente energetiche prodotte durante eventi critici di disruzione nei tokamak, come WEST, nel quale tipicamente raggiungono energie tra 10 e 20 MeV. Quando colpiscono le superfici interne - specialmente il divertore, che assorbe il flusso di particelle e di calore nella macchina - questi elettroni possono attivare il tungsteno, causando significative problematiche, radiologiche e pratiche, per la manutenzione e la sicurezza. L'interazione degli elettroni runaway con il divertore produce un'intensa deposizione di energia, portando a danni materiali come fusione, formazione di crepe, e seri problemi termici, meccanici e radiologici per i componenti a contatto con il plasma. Evidenze sperimentali mostrano che le traiettorie degli elettroni runaway sono fortemente guidate dal campo magnetico toroidale all'interno della camera a vuoto, risultando in angoli di impatto bassi (intorno a 2°) Un'approssimazione con un fascio monoenergetico a 15 MeV si è dimostrata efficace in WEST per modellare i loro effetti. Questi elettroni possono indurre reazioni fotonucleari come 182W(X,n')181W generando isotopi radioattivi di tungsteno. In questo lavoro il fenomeno è stato simulato utilizzando il codice Monte Carlo TRIPOLI-4, sviluppato al CEA, considerando quattro angoli di impatto rappresentativi (5°,15°,45°,85°) per catturare una distribuzione angolare discreta della sorgente elettronica. È stato sviluppato un nuovo modello computazionale, ed è stata impiegata una procedura di minimizzazione per confrontare i risultati di simulazione con quelli ottenuti durante la campagna sperimentale del 2023 effettuata a WEST. I risultati sono in consistente accordo con la distribuzione di corrente fotonica misurata in funzione della profondita' dei monoblocchi di cui il divertore e' composto, confermando la validità dell'assunzione di fascio monoenergetico a basso angolo per gli elettroni runaway in questo contesto. Una validazione reciproca con il codice Monte Carlo GEANT4, ha ulteriormente confermato l'affidabilità di questo approccio modellistico e apre la strada a studi futuri che includeranno gli effetti del campo magnetico. Si sottolinea che una descrizione precisa del fenomeno - e in particolare dell'apparato sperimentale - è essenziale, poiché l'emissione fotonica misurata emessa dal divertore dipende fortemente dalle condizioni sperimentali, dalla geometria e dai parametri delle particelle incidenti. Questi risultati rappresentano un contributo importante per la comprensione e la mitigazione dei rischi operativi posti dalle interazioni degli elettroni runaway negli attuali e futuri tokamaks.
Enhanced Monte Carlo simulation of tungsten activation induced by runaway electrons in WEST tokamak divertor
Signore, Francesca
2024/2025
Abstract
Runaway electrons are highly energetic particles produced during critical disruption events in tokamaks, such as WEST, in which they typically reach energies between 10 and 20 MeV. Upon striking internal surfaces - especially the divertor, which absorbs the particle and heat flux in the machine - these electrons can activate tungsten, causing significant radiological concerns and practical issues for maintenance and safety. The interaction of runaway electrons with the divertor results in intense energy deposition, leading to material damage such as melting, crack formation, and severe thermal, mechanical, and radiological problems for plasma-facing components. Experimental evidence shows that the trajectories of runaway electrons are strongly guided by the toroidal magnetic field inside the vacuum chamber, resulting in low impact angles (around 2°) A monoenergetic 15 MeV beam approximation is demonstrated to be a consistent approach in WEST for modeling their effects. These electrons can induce photonuclear reactions such as 182W(X,n')181W generating radioactive tungsten isotopes. In this work, the phenomenon was simulated using the TRIPOLI-4 Monte Carlo code, developed at CEA, considering four representative impact angles (5°,15°,45°,85°) to capture a discrete angular distribution of the electron source. A new computational model was developed, and a minimization procedure was employed to compare simulation results to those obtained from the C7 2023 experimental campaign performed at WEST. The simulation results exhibited consistent agreement for the measured photon current distribution in depth, corroborating the validity of the low-angle, monoenergetic beam assumption for runaway electrons in this context. A cross-validation with the GEANT4 Monte Carlo code further confirmed the reliability of this modeling approach and paves the way for future studies that will include magnetic field effects. It should be noted that a precise description of the phenomenon - and especially of the experimental setup - is essential, since the measured photon emission from the divertor depends strongly on experimental conditions, geometry, and incident particle parameters. These findings represent an important contribution towards understanding and mitigating the operational risks posed by runaway electron interactions in present and future tokamaks.| File | Dimensione | Formato | |
|---|---|---|---|
|
2025_10_Signore_ExecutiveSummary_02.pdf
accessibile in internet per tutti
Descrizione: testo Executive Summary
Dimensione
1.28 MB
Formato
Adobe PDF
|
1.28 MB | Adobe PDF | Visualizza/Apri |
|
2025_10_Signore_Tesi_01.pdf
accessibile in internet per tutti
Descrizione: testo Tesi
Dimensione
45.88 MB
Formato
Adobe PDF
|
45.88 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/243919