Metabolic syndrome (MetS) is a group of interrelated metabolic disturbances that increase the risk of developing cardiovascular disease, stroke, and type 2 diabetes. Early detection of at-risk individuals is crucial for guiding preventive interventions. This study develops a Bayesian multivariate mixed-effects model for the analysis of MetS in blood donors, using longitudinal data provided by AVIS Milano, which integrates clinical records with self-reported lifestyle information. The five diagnostic components of MetS, given by blood pressure, fasting glucose, waist circumference, triglycerides, and HDL cholesterol, are modeled jointly, leveraging covariates such as age, sex, BMI, and physical activity. The longitudinal structure of dataset allows us to capture temporal dynamics of risk factors, predict risk at both current and future donor visits, and evaluate the effect of changes in key covariates. The model's posterior-predictive distribution is used to classify donors within a traffic-light system (low, potential, and high probability of having MetS), enabling AVIS physicians to identify up to 98% of at-risk donors while reducing unnecessary examinations. Results highlight the central influence of some key covariates, such as BMI, age, and sex, on MetS risk, provide a practical framework for supporting early detection and preventive strategies in the donor population.
La sindrome metabolica (MetS) è un insieme di disturbi metabolici interconnessi che aumentano il rischio di sviluppare malattie cardiovascolari, ictus e diabete di tipo 2. L’individuazione precoce degli individui a rischio è fondamentale per guidare interventi preventivi. Questo studio sviluppa un modello bayesiano multivariato a effetti misti per l’analisi della MetS nei donatori di sangue, utilizzando dati longitudinali forniti da AVIS Milano, che integrano cartelle cliniche con informazioni sullo stile di vita auto-riferite. I cinque componenti diagnostici della MetS, rappresentati da pressione arteriosa, glicemia a digiuno, circonferenza vita, trigliceridi e colesterolo HDL, vengono modellati congiuntamente, sfruttando covariate quali età, sesso, BMI e attività fisica. La struttura longitudinale del dataset permette di catturare le dinamiche temporali dei fattori di rischio, prevedere il rischio sia alle visite attuali che a quelle future dei donatori e valutare l’effetto dei cambiamenti in covariate chiave. La distribuzione predittiva a posteriori del modello viene utilizzata per classificare i donatori all’interno di un sistema “a semaforo” (bassa, potenziale, e alta probabilità di avere la MetS), consentendo ai medici AVIS di identificare fino al 98% dei donatori a rischio riducendo al contempo esami non necessari. I risultati evidenziano l’influenza centrale di alcune covariate chiave, come BMI, età e sesso, sul rischio di MetS e forniscono un quadro pratico a supporto della diagnosi precoce e delle strategie preventive nella popolazione dei donatori.
Bayesian multivariate modeling for the prediction of metabolic syndrome in AVIS blood donors
DESTRO, STEFANO
2024/2025
Abstract
Metabolic syndrome (MetS) is a group of interrelated metabolic disturbances that increase the risk of developing cardiovascular disease, stroke, and type 2 diabetes. Early detection of at-risk individuals is crucial for guiding preventive interventions. This study develops a Bayesian multivariate mixed-effects model for the analysis of MetS in blood donors, using longitudinal data provided by AVIS Milano, which integrates clinical records with self-reported lifestyle information. The five diagnostic components of MetS, given by blood pressure, fasting glucose, waist circumference, triglycerides, and HDL cholesterol, are modeled jointly, leveraging covariates such as age, sex, BMI, and physical activity. The longitudinal structure of dataset allows us to capture temporal dynamics of risk factors, predict risk at both current and future donor visits, and evaluate the effect of changes in key covariates. The model's posterior-predictive distribution is used to classify donors within a traffic-light system (low, potential, and high probability of having MetS), enabling AVIS physicians to identify up to 98% of at-risk donors while reducing unnecessary examinations. Results highlight the central influence of some key covariates, such as BMI, age, and sex, on MetS risk, provide a practical framework for supporting early detection and preventive strategies in the donor population.| File | Dimensione | Formato | |
|---|---|---|---|
|
2025_09_Destro_Tesi.pdf
accessibile in internet per tutti
Dimensione
2.08 MB
Formato
Adobe PDF
|
2.08 MB | Adobe PDF | Visualizza/Apri |
|
2025_09_Destro_Executive_Summary.pdf
accessibile in internet per tutti
Dimensione
472.14 kB
Formato
Adobe PDF
|
472.14 kB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/243929