In recent years, CubeSat technology has gained increasing importance as a cost-effective platform for accessing space, including interplanetary missions. However, their compact size imposes critical limitations, particularly on onboard fuel capacity, which restricts the complexity and duration of potential missions. Communication is another major challenge, especially for deep-space trajectories. To address this, lightweight Large Deployable Antennas (LDA) have been proposed to enhance communication through their large apertures. Owing to their extended surface, such antennas could also be exploited for propulsion by harnessing Solar Radiation Pressure (SRP), potentially mitigating fuel constraints. Nonetheless, the antenna size is restricted by CubeSat volume and deployment requirements, which directly limits their effectiveness as propulsive devices. This dissertation investigates how small an antenna can be while still enabling a meaningful reduction in onboard propellant consumption when conventional propulsion systems are employed. The study focuses on classical chemical thrusters, representing the most demanding case in terms of propellant requirements. The analysis begins with a trade-off of potential mission scenarios and associated advantages and limitations, followed by an evaluation of different optimization strategies for solving the related Optimal Control Problem (OCP). After validating the selected approach, the Optimal Control Problem (OCP). of the Large Deployable Antennas (LDA)-based transfer is formulated and solved, combining solar sailing control with two impulsive maneuvers executed by chemical thrusters. As a case study, a transfer to a Near Earth Asteroid (NEA) is addressed using a Convex Optimization (CO) framework. The results confirm the feasibility of employing an LDA also as a propulsion device and demonstrate its potential to reduce ∆V requirement.
Negli ultimi anni, la tecnologia CubeSat ha acquisito un ruolo sempre più importante come piattaforma a basso costo per l’accesso allo spazio, incluse le missioni interplanetarie. Tuttavia, le dimensioni compatte impongono vincoli significativi, in particolare sulla quantità di carburante che può essere immagazzinata a bordo, limitando così la complessità e la durata delle missioni possibili. La comunicazione rappresenta un’altra sfida rilevante, soprattutto nelle missioni deep-space. Per affrontarla, sono state proposte antenne leggere e di grandi dimensioni (Large Deployable Antennas (LDA)), capaci di migliorare le prestazioni di comunicazione grazie alla loro ampia apertura. Grazie alla loro estesa superficie, tali antenne potrebbero essere sfruttate anche per la propulsione tramite la pressione di radiazione solare (SRP), contribuendo così a mitigare i vincoli legati alla disponibilità di propellente. Tuttavia, le dimensioni dell’antenna sono limitate dal ridotto volume disponibile a bordo e dai requisiti di dispiegamento, vincolo che riduce direttamente la loro efficacia come dispositivi propulsivi. Questa tesi si propone di indagare quanto possa essere ridotta la dimensione di un’antenna mantenendo comunque un impatto significativo sul consumo di propellente a bordo di un CubeSat, nel caso di impiego di sistemi propulsivi convenzionali. Lo studio si concentra sui propulsori chimici classici, rappresentando il caso più esigente in termini di necessità di propellente. L’analisi inizia con un confronto tra diversi scenari di missione, evidenziandone vantaggi e limiti, per poi proseguire con la valutazione delle strategie di ottimizzazione applicabili per risolvere il relativo problema di controllo ottimo (Optimal Control Problem (OCP)). Dopo la validazione dell’approccio selezionato, il problema di controllo ottimo per un trasferimento basato su LDA viene formulato e risolto, combinando il controllo tramite vela solare con due manovre impulsive eseguite dai propulsori chimici. Come caso di studio, viene considerato un trasferimento verso un asteroide vicino alla Terra (Near Earth Asteroid (NEA)), affrontato mediante un approccio di ottimizzazione convessa (Convex Optimization (CO)). I risultati confermano la fattibilità dell’impiego di un’antenna di grandi dimensioni anche come dispositivo propulsivo e ne evidenziano il potenziale nella riduzione del ∆V richiesto.
Leveraging large deployable antennas as quasi-sails for CubeSat missions: a feasibility study using convex optimization
Viviani, Mattia
2024/2025
Abstract
In recent years, CubeSat technology has gained increasing importance as a cost-effective platform for accessing space, including interplanetary missions. However, their compact size imposes critical limitations, particularly on onboard fuel capacity, which restricts the complexity and duration of potential missions. Communication is another major challenge, especially for deep-space trajectories. To address this, lightweight Large Deployable Antennas (LDA) have been proposed to enhance communication through their large apertures. Owing to their extended surface, such antennas could also be exploited for propulsion by harnessing Solar Radiation Pressure (SRP), potentially mitigating fuel constraints. Nonetheless, the antenna size is restricted by CubeSat volume and deployment requirements, which directly limits their effectiveness as propulsive devices. This dissertation investigates how small an antenna can be while still enabling a meaningful reduction in onboard propellant consumption when conventional propulsion systems are employed. The study focuses on classical chemical thrusters, representing the most demanding case in terms of propellant requirements. The analysis begins with a trade-off of potential mission scenarios and associated advantages and limitations, followed by an evaluation of different optimization strategies for solving the related Optimal Control Problem (OCP). After validating the selected approach, the Optimal Control Problem (OCP). of the Large Deployable Antennas (LDA)-based transfer is formulated and solved, combining solar sailing control with two impulsive maneuvers executed by chemical thrusters. As a case study, a transfer to a Near Earth Asteroid (NEA) is addressed using a Convex Optimization (CO) framework. The results confirm the feasibility of employing an LDA also as a propulsion device and demonstrate its potential to reduce ∆V requirement.| File | Dimensione | Formato | |
|---|---|---|---|
|
Viviani_Mattia_MSc_Thesis.pdf
solo utenti autorizzati a partire dal 29/09/2026
Dimensione
18.52 MB
Formato
Adobe PDF
|
18.52 MB | Adobe PDF | Visualizza/Apri |
|
Viviani_Mattia_Executive_Summary.pdf
accessibile in internet solo dagli utenti autorizzati
Dimensione
747.62 kB
Formato
Adobe PDF
|
747.62 kB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/243941