Within the general framework of two-dimensional magnets, we investigate strain-tunable magnetism in monolayer NiPSe₃ by combining first-principles calculations and classical Monte Carlo simulations. After validating the computational setup based on noncollinear density functional theory with spin–orbit coupling, we determine the magnetic ground state to show a peculiar zigzag antiferromagnetic (AFM) spin configuration and an out-of-plane easy axis. When mapping first-principles total energies onto an effective Heisenberg model up to third nearest-neighbour exchange couplings, our results predict J₁ to be ferromagnetic, J₂ to be weakly AFM, and a dominant AFM J₃, consistent with the superexchange pathways in edge-sharing octahedra and chalcogen-mediated long-range coupling. Monte Carlo simulations based on ab initio parameters correctly yield the expected zigzag AFM ground state with an ordering temperature of ~135 K, consistently with prior experimental and theoretical studies. Note that the zigzag spin configuration allows for three equivalent AFM domains, i.e. with ferromagnetic zigzag chains oriented at 0°, ±120°. We quantify magnetostriction at zero strain and show that the exotic zigzag spin configuration induces structural changes: Ni–Ni distances are predicted to be shorter when magnetic moments are parallel compared to the antiparallel configuration. Under uniaxial strain (up to ±3%), we demonstrate a lifting of the above-mentioned threefold degeneracy among zigzag domains, a directional splitting of J₁, and an in-plane anisotropy of the magnetocrystalline energy, while the easy axis for magnetic moments remains out of plane. Finite-temperature properties obtained from Monte Carlo simulations parametrized by ab initio exchanges indicate an increase of the apparent ordering temperature for both compressive and tensile strain over the explored window. Overall, the results establish a coherent lattice–spin interplay in NiPSe₃, provide a quantitative ab initio-to-model description of its magnetic behavior, and highlight uniaxial strain as a viable control knob to tune magnetic properties in a two-dimensional zigzag antiferromagnet.
Nel quadro generale dei magneti bidimensionali, studiamo il magnetismo regolabile mediante deformazione nel NiPSe₃ monolayer combinando calcoli ab initio e simulazioni Monte Carlo. Dopo aver validato il setup computazionale basato su DFT non collineare con accoppiamento spin–orbita, determiniamo che lo stato fondamentale magnetico presenta una peculiare configurazione di spin zigzag AFM e un asse facile di magnetizzazione fuori dal piano. Mappando le energie totali ab initio su un modello di Heisenberg efficace, considerando termini di scambio fino ai terzi vicini, i nostri risultati prevedono J₁ ferromagnetico, J₂ debolmente AFM e un J₃ AFM dominante, in accordo con i percorsi di super-scambio in ottaedri a spigoli condivisi e con un accoppiamento a lungo raggio mediato dai calcogeni. Le simulazioni Monte Carlo basate su parametri ab initio riproducono correttamente lo stato fondamentale zigzag AFM atteso, con una temperatura d’ordine di ~135 K, coerentemente con studi sperimentali e teorici precedenti. Notiamo che la configurazione di spin zigzag ammette tre domini AFM equivalenti, cioè con catene zigzag ferromagnetiche orientate a 0°, ±120°. Quantifichiamo la magnetostrizione a deformazione nulla e mostriamo che l’esotica configurazione zigzag induce variazioni strutturali: le distanze Ni–Ni risultano più corte quando i momenti magnetici sono paralleli rispetto al caso antiparallelo. Sotto deformazione uniassiale (fino a ±3%) dimostriamo la rimozione della degenerazione tripla tra i domini zigzag, uno sdoppiamento direzionale di J₁ e un’anisotropia nel piano dell’energia magnetocristallina, mentre l’asse facile dei momenti magnetici resta fuori dal piano. Le proprietà a temperatura finita, ottenute da simulazioni Monte Carlo parametrizzate con scambi ab initio, indicano un incremento della temperatura d’ordine sia in compressione sia in trazione nell’intervallo considerato. Nel complesso, i risultati stabiliscono un’interazione coerente reticolo–spin in NiPSe₃, forniscono una descrizione quantitativa ab initio-to-model del suo comportamento magnetico e indicano la deformazione uniassiale come un efficace parametro di controllo per modulare le proprietà magnetiche in un antiferromagnete bidimensionale a zigzag.
Ab initio investigation of strain-tunable magnetism in a NiPSe3 monolayer
Piovani, Stefano
2024/2025
Abstract
Within the general framework of two-dimensional magnets, we investigate strain-tunable magnetism in monolayer NiPSe₃ by combining first-principles calculations and classical Monte Carlo simulations. After validating the computational setup based on noncollinear density functional theory with spin–orbit coupling, we determine the magnetic ground state to show a peculiar zigzag antiferromagnetic (AFM) spin configuration and an out-of-plane easy axis. When mapping first-principles total energies onto an effective Heisenberg model up to third nearest-neighbour exchange couplings, our results predict J₁ to be ferromagnetic, J₂ to be weakly AFM, and a dominant AFM J₃, consistent with the superexchange pathways in edge-sharing octahedra and chalcogen-mediated long-range coupling. Monte Carlo simulations based on ab initio parameters correctly yield the expected zigzag AFM ground state with an ordering temperature of ~135 K, consistently with prior experimental and theoretical studies. Note that the zigzag spin configuration allows for three equivalent AFM domains, i.e. with ferromagnetic zigzag chains oriented at 0°, ±120°. We quantify magnetostriction at zero strain and show that the exotic zigzag spin configuration induces structural changes: Ni–Ni distances are predicted to be shorter when magnetic moments are parallel compared to the antiparallel configuration. Under uniaxial strain (up to ±3%), we demonstrate a lifting of the above-mentioned threefold degeneracy among zigzag domains, a directional splitting of J₁, and an in-plane anisotropy of the magnetocrystalline energy, while the easy axis for magnetic moments remains out of plane. Finite-temperature properties obtained from Monte Carlo simulations parametrized by ab initio exchanges indicate an increase of the apparent ordering temperature for both compressive and tensile strain over the explored window. Overall, the results establish a coherent lattice–spin interplay in NiPSe₃, provide a quantitative ab initio-to-model description of its magnetic behavior, and highlight uniaxial strain as a viable control knob to tune magnetic properties in a two-dimensional zigzag antiferromagnet.| File | Dimensione | Formato | |
|---|---|---|---|
|
2025_10_Piovani_Tesi_01.pdf
non accessibile
Dimensione
5.8 MB
Formato
Adobe PDF
|
5.8 MB | Adobe PDF | Visualizza/Apri |
|
2025_10_Piovani_Executive_Summary_02.pdf
non accessibile
Dimensione
2.36 MB
Formato
Adobe PDF
|
2.36 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/243949