In recent years, increasing demand variability, shorter delivery times, and growing operational uncertainty have made capacity management a central challenge for make-to-order environments. In Dual Resource Constrained (DRC) systems, where both machines and workers are binding resources, two mechanisms stand out as particularly relevant: workforce flexibility through cross-training and overtime shifts. While literature has extensively explored worker reallocation and training configurations, the explicit role of overtime in DRC environments remains less investigated, especially in interaction with flexibility and labor assignment rules. This thesis addresses these gaps through a simulation-based study of a flow shop operating under different configurations. Five experimental designs are tested: a static baseline with no adjustments, worker reallocation only, overtime only, reallocation confined to overtime periods, and full integration of flexibility and overtime. The results show that overtime provides immediate improvements in responsiveness, significantly reducing throughput time and tardiness even in static settings. Worker flexibility, on the other hand, enhances robustness and stability, with structured matrices such as Bowl or USI delivering strong performance when combined with decentralized assignment rules. Configurations where flexibility is restricted to overtime generate only limited benefits, while the joint adoption of both mechanisms yields the best outcomes: reduced need for prolonged extra hours, more effective use of overtime, and substantial improvements in delivery reliability. By systematically comparing alternative strategies, this thesis clarifies the conditions under which each adjustment lever is most effective and demonstrates their complementary nature. The findings contribute to the literature on DRC systems by repositioning overtime as a core tactical tool and by highlighting the super-additive value of combining it with structured workforce flexibility.
Negli ultimi anni, la crescente variabilità della domanda, la riduzione dei tempi di consegna e l’aumento dell’incertezza operativa hanno reso la gestione della capacità una sfida centrale nei contesti make-to-order. Nei sistemi Dual Resource Constrained (DRC), in cui sia le macchine che i lavoratori rappresentano risorse vincolanti, due meccanismi si rivelano particolarmente rilevanti: la flessibilità della forza lavoro, ottenuta tramite crosstraining, e i turni di straordinario. Se da un lato la letteratura ha ampiamente analizzato le logiche di riallocazione e le configurazioni di addestramento, il ruolo esplicito dello straordinario nei sistemi DRC rimane meno approfondito, soprattutto in relazione alla flessibilità e alle regole di assegnazione del lavoro. Questa tesi affronta tali lacune attraverso uno studio di simulazione applicato a un flow shop, valutando cinque configurazioni sperimentali: un caso statico senza meccanismi di aggiustamento, la sola riallocazione dei lavoratori, il solo straordinario, la riallocazione limitata al periodo di straordinario e l’integrazione completa di flessibilità e straordinario. I risultati mostrano che lo straordinario produce miglioramenti immediati in termini di reattività, riducendo significativamente il tempo di attraversamento e la tardività anche in sistemi statici. La flessibilità dei lavoratori, invece, rafforza robustezza e stabilità, con configurazioni strutturate come Bowl o USI che garantiscono prestazioni elevate se combinate con regole decentralizzate di riallocazione. Le configurazioni in cui la flessibilità è limitata al solo straordinario generano benefici marginali, mentre l’adozione congiunta dei due meccanismi consente di ridurre il ricorso a ore aggiuntive prolungate, sfruttare al meglio lo straordinario e migliorare in modo sostanziale l’affidabilità delle consegne. Attraverso il confronto sistematico di strategie alternative, la tesi chiarisce le condizioni in cui ciascun meccanismo risulta più efficace e ne dimostra la natura complementare. I risultati contribuiscono alla letteratura sui sistemi DRC, proponendo lo straordinario come leva tattica centrale e mettendo in evidenza il valore super-additivo della sua combinazione con la flessibilità strutturata della forza lavoro.
Capacity adjustement mechanisms in dual resource constrained systems: a simulation-based analysis of overtime and workforce flexibility
Sbuelz, Eiric
2024/2025
Abstract
In recent years, increasing demand variability, shorter delivery times, and growing operational uncertainty have made capacity management a central challenge for make-to-order environments. In Dual Resource Constrained (DRC) systems, where both machines and workers are binding resources, two mechanisms stand out as particularly relevant: workforce flexibility through cross-training and overtime shifts. While literature has extensively explored worker reallocation and training configurations, the explicit role of overtime in DRC environments remains less investigated, especially in interaction with flexibility and labor assignment rules. This thesis addresses these gaps through a simulation-based study of a flow shop operating under different configurations. Five experimental designs are tested: a static baseline with no adjustments, worker reallocation only, overtime only, reallocation confined to overtime periods, and full integration of flexibility and overtime. The results show that overtime provides immediate improvements in responsiveness, significantly reducing throughput time and tardiness even in static settings. Worker flexibility, on the other hand, enhances robustness and stability, with structured matrices such as Bowl or USI delivering strong performance when combined with decentralized assignment rules. Configurations where flexibility is restricted to overtime generate only limited benefits, while the joint adoption of both mechanisms yields the best outcomes: reduced need for prolonged extra hours, more effective use of overtime, and substantial improvements in delivery reliability. By systematically comparing alternative strategies, this thesis clarifies the conditions under which each adjustment lever is most effective and demonstrates their complementary nature. The findings contribute to the literature on DRC systems by repositioning overtime as a core tactical tool and by highlighting the super-additive value of combining it with structured workforce flexibility.| File | Dimensione | Formato | |
|---|---|---|---|
|
2025_10_Sbuelz_Tesi_01.pdf
non accessibile
Descrizione: Testo della tesi
Dimensione
767.58 kB
Formato
Adobe PDF
|
767.58 kB | Adobe PDF | Visualizza/Apri |
|
2025_10_Sbuelz_Executive Summary_02.pdf
non accessibile
Descrizione: Testo dell'executive summary
Dimensione
371.89 kB
Formato
Adobe PDF
|
371.89 kB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/243972