This thesis work focuses on the development of alginate–mucin hydrogels as in vitro models of nasal mucus, integrated into a 3D-printed infant nasal cavity cast. Different alginate-based solutions were tested, varying in alginate concentration, while also considering ionic strength through the addition of NaCl at a physiological level and including mucin to better reproduce mucus composition. Hydrogels were then produced through internal gelation, in which a CaCO₃ layer deposited by solvent evaporation was activated with glucono-δ-lactone (GDL), and were prepared only from the solution compositions that most closely mimicked physiological mucus. Spreading tests aimed at assessing solution distribution on the cast surface. Solvent evaluation tested surface coverage and evaporation of volatile solvents considered for CaCO₃ deposition. Optical microscopy verified CaCO₃ particle homogeneity in the case of acetone as solvent, which was ultimately selected. Viscosity measurements of alginate–mucin solutions showed a strong dependence on alginate concentration and consistent shear-thinning behavior, while the addition of NaCl modulated chain interactions in a concentration-dependent manner. Mucin incorporation enhanced viscosity and intensified non-Newtonian responses, further aligning the formulations with native mucus behavior. Amplitude sweep tests defined the linear viscoelastic region of the hydrogels, and frequency sweep tests confirmed their gel-like behavior, with storage modulus remaining higher than loss modulus across the frequency range. pH analysis showed an initial acidification of the solutions to pH 3-4, which stabilized within the physiological range of pH 5-6 after crosslinking. Adhesion studies finally demonstrated that the optimized 1\% alginate-mucin-NaCl hydrogel formed a uniform, adherent layer on the nasal cast.
Questo lavoro di tesi si concentra sullo sviluppo di idrogel alginato--mucina come modelli \textit{in vitro} del muco nasale, integrati in un calco della cavità nasale neonatale stampato in 3D. Sono state testate diverse soluzioni a base di alginato, variando la concentrazione di alginato, considerando al contempo la forza ionica tramite l’aggiunta di NaCl a livello fisiologico e includendo mucina per riprodurre più fedelmente la composizione del muco. Gli idrogel sono stati quindi ottenuti per gelificazione interna: uno strato di CaCO$_3$ depositato per evaporazione del solvente è stato attivato con glucono-\(\delta\)-lattone (GDL); sono state preparate solo le composizioni di soluzione che imitavano più da vicino il muco fisiologico. Le prove di spandimento (spreading) miravano a valutare la distribuzione della soluzione sulla superficie del calco. La valutazione dei solventi ha esaminato la copertura superficiale e l’evaporazione dei solventi volatili considerati per il deposito di CaCO$_3$. La microscopia ottica ha verificato l’omogeneità delle particelle di CaCO$_3$ nel caso dell’acetone come solvente, poi selezionato. Le misure di viscosità delle soluzioni alginato--mucina hanno mostrato una forte dipendenza dalla concentrazione di alginato e un comportamento pseudoplastico (shear-thinning) costante, mentre l’aggiunta di NaCl ha modulato le interazioni tra catene in modo dipendente dalla concentrazione. L’inclusione della mucina ha aumentato la viscosità e accentuato le risposte non newtoniane, allineando ulteriormente le formulazioni al comportamento del muco nativo. Le prove di sweep in ampiezza hanno definito la regione viscoelastica lineare degli idrogel, e le prove di sweep in frequenza ne hanno confermato il comportamento di tipo gel, con il modulo di conservazione \(G'\) superiore al modulo di perdita \(G''\) su tutto l’intervallo di frequenze. Le analisi di pH hanno mostrato un’acidificazione iniziale delle soluzioni a pH 3--4, che si è stabilizzata nell’intervallo fisiologico di pH 5--6 dopo la gelificazione. Gli studi di adesione hanno infine dimostrato che l’idrogel ottimizzato di alginato--mucina--NaCl all’1\% formava uno strato uniforme e aderente sul calco nasale.
Interface evaluation of biomimetic mucus models on 3D-printed nasal casts
Maadani, Amir Mohammad;Mofakhami, Sohrab
2024/2025
Abstract
This thesis work focuses on the development of alginate–mucin hydrogels as in vitro models of nasal mucus, integrated into a 3D-printed infant nasal cavity cast. Different alginate-based solutions were tested, varying in alginate concentration, while also considering ionic strength through the addition of NaCl at a physiological level and including mucin to better reproduce mucus composition. Hydrogels were then produced through internal gelation, in which a CaCO₃ layer deposited by solvent evaporation was activated with glucono-δ-lactone (GDL), and were prepared only from the solution compositions that most closely mimicked physiological mucus. Spreading tests aimed at assessing solution distribution on the cast surface. Solvent evaluation tested surface coverage and evaporation of volatile solvents considered for CaCO₃ deposition. Optical microscopy verified CaCO₃ particle homogeneity in the case of acetone as solvent, which was ultimately selected. Viscosity measurements of alginate–mucin solutions showed a strong dependence on alginate concentration and consistent shear-thinning behavior, while the addition of NaCl modulated chain interactions in a concentration-dependent manner. Mucin incorporation enhanced viscosity and intensified non-Newtonian responses, further aligning the formulations with native mucus behavior. Amplitude sweep tests defined the linear viscoelastic region of the hydrogels, and frequency sweep tests confirmed their gel-like behavior, with storage modulus remaining higher than loss modulus across the frequency range. pH analysis showed an initial acidification of the solutions to pH 3-4, which stabilized within the physiological range of pH 5-6 after crosslinking. Adhesion studies finally demonstrated that the optimized 1\% alginate-mucin-NaCl hydrogel formed a uniform, adherent layer on the nasal cast.| File | Dimensione | Formato | |
|---|---|---|---|
|
2025_10_Maadani_Mofakhami_Thesis.pdf
accessibile in internet per tutti
Dimensione
23.52 MB
Formato
Adobe PDF
|
23.52 MB | Adobe PDF | Visualizza/Apri |
|
2025_10_Maadani_Mofakhami_Executive Summary.pdf
accessibile in internet per tutti
Dimensione
15.35 MB
Formato
Adobe PDF
|
15.35 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/243978