Additive Manufacturing (AM) brought a new era in the manufacturing industry by enabling the production of parts with minimal material waste, often unachievable with conventional methods. Among the AM technologies, Wire Laser Additive Manufacturing (WLAM) offers high deposition rates, lower feedstock cost, and the potential for manufacturing or repairing large-sized components. The WLAM of Ti6Al4V gains popularity for large titanium components in aerospace, biomedical, and automotive sectors due to its high specific strength, biocompatibility, corrosion resistance, and fatigue performance. The objective of this thesis is to investigate the effects of wire feedstock type and boron-induced grain refinement of Ti6Al4V alloy. They include solid Ti6Al4V, powder-cored Ti6Al4V, and powder-cored Ti6Al4V with 0.2 wt.% boron nanoparticles. Cored wire is of particular interest, as it enables the tailoring of the powder mixture to achieve targeted chemical compositions and properties. In line with this, trace boron additions through the powder core were intended to refine the microstructure and improve isotropy. Directional solidification during AM typically produces coarse columnar prior-β grains that contribute to anisotropic properties and lower ductility. The addition of boron promoted in-situ formation of TiB, which refined prior-β grain width from >350 µm to <100 µm while also suppressing continuous grain boundary αgb. Strategies to improve ductility and reduce anisotropy, namely a multi-stage heat treatment sequence (MSHT; 950 °C → 850 °C → 750 °C → 650 °C), were applied to promote globularization and coarsening of the α laths. Tensile testing showed that the boron-modified alloy exhibited the highest strength but the lowest ductility, with a UTS of 1067 MPa and elongation of ≈1.0% in the horizontal orientation, and a UTS of 904 MPa with elongation of ≈0.8% in the vertical orientation. Core wire without boron also showed high strength with UTS of 961 MPa and moderate elongation ≈6.4% in the horizontal direction, but the vertical properties were much lower with UTS of 828 MPa and elongation ≈1%, indicating strong anisotropy. In contrast, the solid-wire alloy exhibited isotropic behavior with a balanced combination of strength and ductility, showing UTS values of ≈815–835 MPa and elongations of ≈11–15% in both horizontal and vertical orientations. Thus, while boron increases strength, it does not resolve anisotropy or ductility limitations of core wires, whereas solid wire feedstock, owing to its microstructural homogeneity and lower susceptibility to contamination, remains superior for achieving a desirable combination of strength, ductility, and isotropy in WLAM of Ti6Al4V.
La Manifattura Additiva (AM) ha introdotto una nuova era nell’industria manifatturiera, consentendo la produzione di componenti con minimo spreco di materiale, spesso irrealizzabili con i metodi convenzionali. Tra le tecnologie AM, la Wire Laser Additive Manufacturing (WLAM) offre alti tassi di deposizione, costi ridotti del materiale di apporto e la possibilità di fabbricare o riparare componenti di grandi dimensioni. La WLAM della lega Ti6Al4V sta guadagnando popolarità per la realizzazione di componenti titanici di grandi dimensioni nei settori aerospaziale, biomedicale e automobilistico grazie all’elevata resistenza specifica, biocompatibilità, resistenza alla corrosione e prestazioni a fatica. L’obiettivo di questa tesi è investigare gli effetti del tipo di filo di apporto e della raffinazione del grano indotta dal boro nella lega Ti6Al4V. I materiali considerati includono filo pieno di Ti6Al4V, filo animato con polveri di Ti6Al4V e filo animato con polveri di Ti6Al4V contenente nanoparticelle di boro allo 0,2% in peso. Il filo animato riveste un interesse particolare, poiché consente di modulare la miscela di polveri al fine di ottenere composizioni chimiche e proprietà mirate. In linea con questo approccio, l’aggiunta di tracce di boro attraverso l’anima in polvere è finalizzata a raffinare la microstruttura e a migliorare l’isotropia. La solidificazione direzionale durante i processi di AM tipicamente produce grossi grani colonnari di prior-β, che contribuiscono a proprietà anisotrope e a una minore duttilità. L’aggiunta di boro ha promosso la formazione in-situ di TiB, il quale ha raffinato la larghezza dei grani di prior-β da oltre 350 µm a meno di 100 µm, sopprimendo al contempo la presenza continua di αgb ai bordi di grano. Per migliorare la duttilità e ridurre l’anisotropia è stata applicata una sequenza di trattamenti termici multistadio (MSHT; 950 °C → 850 °C → 750 °C → 650 °C), finalizzata a promuovere la globularizzazione e l’ingrossamento delle lamelle di α. Le prove di trazione hanno mostrato che la lega modificata con boro ha raggiunto la resistenza più elevata ma la duttilità più bassa, con una UTS di 1067 MPa e un allungamento di ≈1,0% nell’orientazione orizzontale, e una UTS di 904 MPa con un allungamento di ≈0,8% nell’orientazione verticale. Il filo animato senza boro ha inoltre mostrato un’elevata resistenza con una UTS di 961 MPa e un allungamento moderato di ≈6,4% nell’orientazione orizzontale; tuttavia, le proprietà verticali sono risultate molto inferiori, con una UTS di 828 MPa e un allungamento di ≈1%, indicando una forte anisotropia. Al contrario, la lega ottenuta da filo pieno ha mostrato un comportamento isotropo con una combinazione bilanciata di resistenza e duttilità, con valori di UTS di ≈815–835 MPa e allungamenti di ≈11–15% in entrambe le orientazioni, orizzontale e verticale. Pertanto, sebbene il boro aumenti la resistenza, non risolve i limiti di anisotropia o di duttilità dei fili animati, mentre il filo pieno, grazie alla sua omogeneità microstrutturale e alla minore suscettibilità alla contaminazione, rimane superiore per ottenere una combinazione desiderabile di resistenza, duttilità e isotropia nella WLAM del Ti6Al4V.
Effect of feedstock type and boron induced grain refinement on the microstructure and mechanical properties of Ti6Al4V processed by wire laser additive manufacturing
Chandrasekar Muralibabu, Bharath Babu
2024/2025
Abstract
Additive Manufacturing (AM) brought a new era in the manufacturing industry by enabling the production of parts with minimal material waste, often unachievable with conventional methods. Among the AM technologies, Wire Laser Additive Manufacturing (WLAM) offers high deposition rates, lower feedstock cost, and the potential for manufacturing or repairing large-sized components. The WLAM of Ti6Al4V gains popularity for large titanium components in aerospace, biomedical, and automotive sectors due to its high specific strength, biocompatibility, corrosion resistance, and fatigue performance. The objective of this thesis is to investigate the effects of wire feedstock type and boron-induced grain refinement of Ti6Al4V alloy. They include solid Ti6Al4V, powder-cored Ti6Al4V, and powder-cored Ti6Al4V with 0.2 wt.% boron nanoparticles. Cored wire is of particular interest, as it enables the tailoring of the powder mixture to achieve targeted chemical compositions and properties. In line with this, trace boron additions through the powder core were intended to refine the microstructure and improve isotropy. Directional solidification during AM typically produces coarse columnar prior-β grains that contribute to anisotropic properties and lower ductility. The addition of boron promoted in-situ formation of TiB, which refined prior-β grain width from >350 µm to <100 µm while also suppressing continuous grain boundary αgb. Strategies to improve ductility and reduce anisotropy, namely a multi-stage heat treatment sequence (MSHT; 950 °C → 850 °C → 750 °C → 650 °C), were applied to promote globularization and coarsening of the α laths. Tensile testing showed that the boron-modified alloy exhibited the highest strength but the lowest ductility, with a UTS of 1067 MPa and elongation of ≈1.0% in the horizontal orientation, and a UTS of 904 MPa with elongation of ≈0.8% in the vertical orientation. Core wire without boron also showed high strength with UTS of 961 MPa and moderate elongation ≈6.4% in the horizontal direction, but the vertical properties were much lower with UTS of 828 MPa and elongation ≈1%, indicating strong anisotropy. In contrast, the solid-wire alloy exhibited isotropic behavior with a balanced combination of strength and ductility, showing UTS values of ≈815–835 MPa and elongations of ≈11–15% in both horizontal and vertical orientations. Thus, while boron increases strength, it does not resolve anisotropy or ductility limitations of core wires, whereas solid wire feedstock, owing to its microstructural homogeneity and lower susceptibility to contamination, remains superior for achieving a desirable combination of strength, ductility, and isotropy in WLAM of Ti6Al4V.| File | Dimensione | Formato | |
|---|---|---|---|
|
2025_10_Chandrasekar_01.pdf
non accessibile
Descrizione: Thesis Text
Dimensione
307.76 MB
Formato
Adobe PDF
|
307.76 MB | Adobe PDF | Visualizza/Apri |
|
2025_10_Chandrasekar_Executive Summary_02.pdf
non accessibile
Descrizione: Executive Summary
Dimensione
21.11 MB
Formato
Adobe PDF
|
21.11 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/243994