Freeze casting is a versatile technique for fabricating porous materials with controlled microstructures, but its application to sodium silicate (waterglass, WG) remains underexplored. This thesis examines the feasibility of continuous freeze casting of WG, focusing on how specimen height and dilution affect morphology, crack formation, and mechanical behaviour. Thirty WG specimens were fabricated and assessed by physical measurements, with representative specimens characterised by micro-computed tomography (micro-CT), scanning electron microscopy (SEM), and preliminary compression testing. Continuous freeze casting produced centimetre-scale specimens with consistent bulk density. Dilution had a pronounced effect on morphology: 50% dilution specimens developed vertical cracks that relieved stresses without catastrophic failure, whereas 75% specimens exhibited irregular crack networks associated with heterogeneity and fragility. SEM revealed largely intact lamellae with interlamellar bridges at 50% dilution, but extensively perforated lamellae with minimal bridging at 75% dilution. Taller specimens displayed more uniform densities and more regular crack structures, suggesting a stabilising effect of specimen height on the solidification front. Preliminary mechanical testing showed that the 50% specimen had higher compressive strength and elastic modulus than the 75% specimen. Their contrasting stress-strain responses reflected the underlying microstructures: extended domains in the 50% specimen collapsed stepwise, while fragmented lamellae in the 75% specimen failed more diffusely. This work expands understanding of freeze-cast WG by demonstrating how dilution and specimen height govern density uniformity, morphology, and mechanical performance. It highlights the opportunities and challenges of scaling continuous freeze casting for hierarchically porous WG structures, providing a basis for future optimisation and applications.
Il freeze casting è una tecnica versatile per la fabbricazione di materiali porosi con microstrutture controllate, ma la sua applicazione al silicato di sodio (vetro solubile, WG – waterglass) rimane poco esplorata. Questa tesi esamina la fattibilità del freeze casting continuo di WG, con particolare attenzione a come l’altezza del campione e la diluizione influenzino la morfologia, la formazione di fratture e il comportamento meccanico. Sono stati fabbricati trenta campioni di WG e valutati mediante misure fisiche; campioni rappresentativi sono stati analizzati tramite micro-tomografia computerizzata (micro-CT), microscopia elettronica a scansione (SEM) e prove preliminari di compressione. Il freeze casting continuo ha prodotto campioni dell’ordine dei centimetri con densità apparente uniforme. La diluizione ha avuto un effetto marcato sulla morfologia: i campioni al 50% hanno sviluppato fratture verticali che hanno alleviato le tensioni senza portare a un cedimento catastrofico, mentre i campioni al 75% hanno mostrato reti di fratture irregolari associate a eterogeneità e fragilità. Le osservazioni SEM hanno rivelato lamelle per lo più intatte con ponti interlamellari al 50% di diluizione, ma lamelle ampiamente perforate con scarsa connettività al 75%. I campioni più alti hanno mostrato densità più uniformi e strutture di frattura più regolari, suggerendo un effetto stabilizzante dell’altezza del campione sul fronte di solidificazione. Le prove meccaniche preliminari hanno mostrato che il campione al 50% presentava una maggiore resistenza a compressione e un modulo elastico superiore rispetto al campione al 75%. Le risposte tensione-deformazione contrastanti riflettevano le microstrutture sottostanti: domini estesi nel campione al 50% collassavano gradualmente, mentre lamelle frammentate nel campione al 75% cedevano in modo più diffuso. Questo lavoro amplia la comprensione del WG ottenuto tramite freeze casting, dimostrando come la diluizione e l’altezza del campione influenzino l’uniformità di densità, la morfologia e le prestazioni meccaniche. Inoltre, mette in evidenza le opportunità e le sfide della scalabilità del freeze casting continuo per strutture WG gerarchicamente porose, fornendo una base per futuri sviluppi e applicazioni.
Continuous freeze casting of waterglass: morphology, crack formation, and mechanical behaviour
Tidhar, Tom
2024/2025
Abstract
Freeze casting is a versatile technique for fabricating porous materials with controlled microstructures, but its application to sodium silicate (waterglass, WG) remains underexplored. This thesis examines the feasibility of continuous freeze casting of WG, focusing on how specimen height and dilution affect morphology, crack formation, and mechanical behaviour. Thirty WG specimens were fabricated and assessed by physical measurements, with representative specimens characterised by micro-computed tomography (micro-CT), scanning electron microscopy (SEM), and preliminary compression testing. Continuous freeze casting produced centimetre-scale specimens with consistent bulk density. Dilution had a pronounced effect on morphology: 50% dilution specimens developed vertical cracks that relieved stresses without catastrophic failure, whereas 75% specimens exhibited irregular crack networks associated with heterogeneity and fragility. SEM revealed largely intact lamellae with interlamellar bridges at 50% dilution, but extensively perforated lamellae with minimal bridging at 75% dilution. Taller specimens displayed more uniform densities and more regular crack structures, suggesting a stabilising effect of specimen height on the solidification front. Preliminary mechanical testing showed that the 50% specimen had higher compressive strength and elastic modulus than the 75% specimen. Their contrasting stress-strain responses reflected the underlying microstructures: extended domains in the 50% specimen collapsed stepwise, while fragmented lamellae in the 75% specimen failed more diffusely. This work expands understanding of freeze-cast WG by demonstrating how dilution and specimen height govern density uniformity, morphology, and mechanical performance. It highlights the opportunities and challenges of scaling continuous freeze casting for hierarchically porous WG structures, providing a basis for future optimisation and applications.| File | Dimensione | Formato | |
|---|---|---|---|
|
2025_10_Tidhar.pdf
accessibile in internet per tutti
Dimensione
2.24 MB
Formato
Adobe PDF
|
2.24 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/244007