The increasing demand for compact and efficient propulsion systems, particularly for small satellites, has driven interest in low-thrust chemical engines using non-toxic propellants such as gaseous hydrogen and gaseous oxygen (GH2/GO2). This work focuses on the design and analysis of a 50 N GO2-GH2 vortex-cooled thruster for in-space propulsion. The engine is compact, with a thrust chamber measuring 2.27 cm in diameter and 6.67 cm in length. Its geometrical configuration is determined using a bottom-up approach, where the modeling process begins with the nozzle and progresses towards the injection plate. The engine is manufactured via 3D printing, with AISI 316L stainless steel. The study is carried out combining different tools: NASA CEA provides detailed thermodynamic and chemical data, MATLAB® is used for preliminary design and performance estimation, SolidWorks supports the three-dimensional design of the thruster, and ANSYS Fluent is applied to analyze the internal flow field of the engine. The thruster features an exotic injection configuration arranged at both ends of the thrust chamber with a double vortex structure: the oxidizer is injected tangentially at the end of the combustion chamber to form a vortex that travels upward along the chamber wall. When it reaches the faceplate, the outer vortex turns inward, creating an inner vortex that spirals downward toward the nozzle. Fuel is injected radially at the head of the combustion chamber and mixes within the inner vortex. Such a configuration enables gaseous film cooling to be applied to the engine, while promising combustion efficiency thanks to the vortex path. The design demonstrates that vortex cooling, when combined with additive manufacturing, offers a promising solution for reliable and cost-effective low-thrust propulsion. The outcomes of this work provide a design that can support further research and future experimental testing.
La crescente necessità di sistemi propulsivi compatti ed efficienti per piccoli satelliti ha orientato la ricerca verso soluzioni a bassa spinta che utilizzano propellenti non tossici, come la coppia di idrogeno e ossigeno gassosi (GH2/GO2). Questo lavoro si concentra sulla progettazione e l’analisi di un propulsore da 50 N a GO2-GH2 con raffreddamento a vortice, destinato alla propulsione spaziale. Il motore presenta dimensioni ridotte, con una camera di combustione di 2.27 cm di diametro e 6.67 cm di lunghezza. La sua config urazione geometrica è stata definita seguendo un approccio bottom-up, in cui il processo di modellazione parte dall’ugello e procede verso la piastra di iniezione. La realizzazione è stata effettuata tramite stampa 3D in acciaio inossidabile AISI 316L. Lo studio è stato condotto impiegando diversi strumenti: NASA CEA per i dati chimici e termodinam ici, MATLAB® per il design preliminare e la stima delle prestazioni, SolidWorks per la modellazione tridimensionale del motore, e ANSYS Fluent per l’analisi del campo di f lusso interno al motore. Il propulsore adotta una configurazione di iniezione disposta ad entrambe le estremità della camera di combustione, generando una doppia struttura vorticosa: l’ossidante viene iniettato tangenzialmente all’estremità della camera di com bustione, formando un vortice che risale lungo la parete. Raggiunta la piastra frontale, il vortice esterno da origine ad un vortice secondario che si avvolge in senso discendente verso l’ugello. Il combustibile viene invece iniettato radialmente nella parte superiore della camera di combustione e si mescola all’interno del vortice interno. Tale configu razione permette di applicare un raffreddamento a film gassoso al motore, garantendo al contempo una buona efficienza di combustione favorita dalla struttura vorticosa. Il modello dimostra che il raffreddamento a vortice, in combinazione con la fabbricazione additiva, offre una soluzione promettente per motori a razzo a bassa spinta affidabili ed economicamente convenienti. I risultati di questo studio forniscono un modello in grado di supportare ulteriori attività di ricerca.
Design and cold-flow analysis of a GO2-GH2 vortex-cooled thruster for in-space propulsion
Poverini, Viola
2025/2026
Abstract
The increasing demand for compact and efficient propulsion systems, particularly for small satellites, has driven interest in low-thrust chemical engines using non-toxic propellants such as gaseous hydrogen and gaseous oxygen (GH2/GO2). This work focuses on the design and analysis of a 50 N GO2-GH2 vortex-cooled thruster for in-space propulsion. The engine is compact, with a thrust chamber measuring 2.27 cm in diameter and 6.67 cm in length. Its geometrical configuration is determined using a bottom-up approach, where the modeling process begins with the nozzle and progresses towards the injection plate. The engine is manufactured via 3D printing, with AISI 316L stainless steel. The study is carried out combining different tools: NASA CEA provides detailed thermodynamic and chemical data, MATLAB® is used for preliminary design and performance estimation, SolidWorks supports the three-dimensional design of the thruster, and ANSYS Fluent is applied to analyze the internal flow field of the engine. The thruster features an exotic injection configuration arranged at both ends of the thrust chamber with a double vortex structure: the oxidizer is injected tangentially at the end of the combustion chamber to form a vortex that travels upward along the chamber wall. When it reaches the faceplate, the outer vortex turns inward, creating an inner vortex that spirals downward toward the nozzle. Fuel is injected radially at the head of the combustion chamber and mixes within the inner vortex. Such a configuration enables gaseous film cooling to be applied to the engine, while promising combustion efficiency thanks to the vortex path. The design demonstrates that vortex cooling, when combined with additive manufacturing, offers a promising solution for reliable and cost-effective low-thrust propulsion. The outcomes of this work provide a design that can support further research and future experimental testing.| File | Dimensione | Formato | |
|---|---|---|---|
|
2025_10_Poverini.pdf
accessibile in internet per tutti
Descrizione: testo della tesi
Dimensione
9.2 MB
Formato
Adobe PDF
|
9.2 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/244021