The rapid growth of the space economy in recent years has led to a significant increase in the number of satellites operating in Low Earth Orbit (LEO). To limit the in-orbit crowding, space regulators prescribe the decommission of LEO space objects through an atmospheric re-entry at the end of their life. Similar requirements are present in voluntary best-in-class practices as the ones reported in ESA’s Zero Debris Charter. For these reasons, the number of uncontrolled re-entries is becoming more and more considerable, raising concerns about ground casualty risk. To address this, Design for Demise (D4D) aims to ensure that components are destroyed during re-entry. Thermite for Demise (T4D) is a subset of these techniques leveraging energetic thermite-based materials embedded into re-entry resistant structures to promote heating and ablation. Experimental tests with loose thermite were performed; however, its high volatility yielded sub-optimal outcomes. This thesis investigates the use of additive manufacturing and casting to embed thermites within polymers and shape them into parts solving the abovementioned issues. In this work two thermite formulations, Al/Fe2O3 and Mg/SiO2, were embedded in ABS through casting, while only Mg/SiO2 was printed in resin via DLP-AM, due to technological constraints (viscosity, scattering, and energy band gap). Different production methodologies were developed from ground up and tested. Characterization of the cast and printed parts included thermal analysis, ignition tests, and geometrical accuracy evaluation. Casting showed poor geometric control, while 3D printing achieved high precision and design freedom. Al/Fe2O3 proved best for casting, with minimal sedimentation. Mg/SiO2 required the development of a protective coating, due to the high reactivity of magnesium, but was suitable for printing. Thermogravimetry exposed a major sedimentation in the casted samples, unlike printed parts which were found to be uniform. Additive manufacturing demonstrated superior performance, advancing to burning tests phase where printed charges were ignited, and their ignition temperature was measured. Successful printing of custom-shaped parts confirmed its design flexibility. These findings support the integration of polymer-thermite composites as promising candidates for T4D applications to ensure the demisability of hard-to-demise parts during re-entry.
La rapida crescita dell’economia spaziale negli ultimi anni ha portato a un significativo aumento del numero di satelliti operanti in orbita bassa terrestre (LEO). Per limitare l’affollamento orbitale, gli enti regolatori spaziali prescrivono la dismissione degli oggetti spaziali in LEO tramite il rientro atmosferico al termine della loro vita operativa. Requisiti simili sono presenti anche nelle voluntary best-in-class practices, come quelle riportate nello Zero Debris Charter dell’ESA. Per queste ragioni, il numero di rientri incontrollati sta diventando sempre più consistente, sollevando preoccupazioni riguardo al rischio di vittime a terra. Per affrontare questo problema, il Design for Demise (D4D) mira a garantire che i componenti vengano distrutti durante il rientro. Il Thermite for Demise (T4D) è una sotto-categoria di queste tecniche che sfrutta materiali energetici a base di termite incorporati in strutture resistenti al rientro per promuovere il riscaldamento e l’ablazione. Tentativi di utilizzo di termite in forma libera sono stati effettuati, ma la sua volatilità ha prodotto risultati sub-ottimali. Questa tesi indaga l’uso della manifattura additiva e della colata per incorporare termite all’interno di polimeri e modellarle in parti atte a risolvere le problematiche sopra menzionate. Due formulazioni, Al/Fe2O3 e Mg/SiO2, sono state incorporate in ABS tramite colata, mentre solo Mg/SiO2 è stato stampato in resina mediante DLP-AM, a causa di vincoli tecnologici (viscosità, scattering e band gap energetico). Diverse metodologie di produzione, adattate alla tecnologia utilizzata, sono state sviluppate ex novo e testate. La caratterizzazione dei pezzi colati e stampati ha incluso analisi termiche, prove di accensione e valutazioni di accuratezza geometrica. La colata ha mostrato un controllo geometrico limitato, mentre la stampa 3D ha raggiunto alta precisione e libertà progettuale. Al/Fe2O3 si è dimostrato il più adatto alla colata, con sedimentazione minima. Mg/SiO2 ha richiesto lo sviluppo di un rivestimento protettivo, a causa dell’elevata reattività del magnesio, ma si è dimostrato idoneo alla stampa. Le analisi termogravimetriche hanno evidenziato una marcata sedimentazione nei campioni colati, a differenza delle parti stampate che sono risultate uniformi. La manifattura additiva ha dimostrato prestazioni superiori, passando quindi alla fase di prove di combustione, durante le quali i campioni stampati sono stati accesi e le loro temperature di accensione misurate. La riuscita stampa di componenti sagomati su misura ha confermato la flessibilità progettuale. Questi risultati supportano l’integrazione di compositi polimero-termite come candidati promettenti per applicazioni T4D, al fine di garantire l'ablazione delle parti difficili da distruggere durante il rientro atmosferico.}
Shaping thermites: investigation of casting and 3D printing for spacecraft Demise applications
Pratola, Oscar
2024/2025
Abstract
The rapid growth of the space economy in recent years has led to a significant increase in the number of satellites operating in Low Earth Orbit (LEO). To limit the in-orbit crowding, space regulators prescribe the decommission of LEO space objects through an atmospheric re-entry at the end of their life. Similar requirements are present in voluntary best-in-class practices as the ones reported in ESA’s Zero Debris Charter. For these reasons, the number of uncontrolled re-entries is becoming more and more considerable, raising concerns about ground casualty risk. To address this, Design for Demise (D4D) aims to ensure that components are destroyed during re-entry. Thermite for Demise (T4D) is a subset of these techniques leveraging energetic thermite-based materials embedded into re-entry resistant structures to promote heating and ablation. Experimental tests with loose thermite were performed; however, its high volatility yielded sub-optimal outcomes. This thesis investigates the use of additive manufacturing and casting to embed thermites within polymers and shape them into parts solving the abovementioned issues. In this work two thermite formulations, Al/Fe2O3 and Mg/SiO2, were embedded in ABS through casting, while only Mg/SiO2 was printed in resin via DLP-AM, due to technological constraints (viscosity, scattering, and energy band gap). Different production methodologies were developed from ground up and tested. Characterization of the cast and printed parts included thermal analysis, ignition tests, and geometrical accuracy evaluation. Casting showed poor geometric control, while 3D printing achieved high precision and design freedom. Al/Fe2O3 proved best for casting, with minimal sedimentation. Mg/SiO2 required the development of a protective coating, due to the high reactivity of magnesium, but was suitable for printing. Thermogravimetry exposed a major sedimentation in the casted samples, unlike printed parts which were found to be uniform. Additive manufacturing demonstrated superior performance, advancing to burning tests phase where printed charges were ignited, and their ignition temperature was measured. Successful printing of custom-shaped parts confirmed its design flexibility. These findings support the integration of polymer-thermite composites as promising candidates for T4D applications to ensure the demisability of hard-to-demise parts during re-entry.| File | Dimensione | Formato | |
|---|---|---|---|
|
Executive_Summary___Scuola_di_Ingegneria_Industriale_e_dell_Informazione___Politecnico_di_Milano.pdf
non accessibile
Descrizione: Executive Summary
Dimensione
3.3 MB
Formato
Adobe PDF
|
3.3 MB | Adobe PDF | Visualizza/Apri |
|
THESIS_OscarPratola_Shaping_Thermites__Investigation_of_Casting_and_3D_Printing_for_Spacecraft_Demise_Applications.pdf
non accessibile
Descrizione: Thesis
Dimensione
28.19 MB
Formato
Adobe PDF
|
28.19 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/244025