Aeroacoustic noise generated by turbulent flows interacting with solid surfaces remains a significant engineering challenge, requiring predictive and efficient tools for source identification and noise control. High-fidelity simulations can resolve sound generation mechanisms, but their cost limits their use in design optimization or broad parametric studies. This thesis develops a reduced-order modeling (ROM) framework that combines a boundary element method (BEM) for acoustic scattering with a resolvent-based source–response analysis to identify the main pathways through which turbulence excites structural vibrations and radiated sound. The BEM solver enforces coupled fluid–structure boundary conditions for rigid and elastic plates, enabling accurate computation of scattered fields and far-field directivity. Validation against benchmark cases confirms the method, reproducing compact and non-compact scattering behavior, resonance peaks, and radiation patterns. In the compact regime, elasticity has little effect, while in the non-compact regime structural resonances are decisive: flexibility can suppress noise through damping at low Mach numbers but can also amplify radiation near resonance. The analysis highlights the importance of edge-localized forcing. The resolvent modes show that a few optimal input–output pairs dominate the acoustic response. This low-rank structure explains the effectiveness of edge treatments and targeted compliance tuning, allowing ROM predictions without full turbulence simulations. Overall, the thesis provides a validated, computationally efficient framework to analyze and interpret flow–structure–acoustic coupling, showing where forcing is most effective, how strongly it is amplified, and how it shapes far-field sound. It establishes a foundation for future extensions to three-dimensional geometries and realistic turbulent inflows, supporting practical strategies for aeroacoustic noise prediction and control.
Il rumore aeroacustico generato dall’interazione dei flussi turbolenti con superfici solide rappresenta una sfida significativa in ingegneria, richiedendo strumenti predittivi ed efficienti per l’identificazione delle sorgenti e il controllo del rumore. Le simulazioni ad alta fedeltà risolvono i meccanismi di generazione del suono, ma il loro costo ne limita l’uso in ottimizzazione del design o studi parametrici estesi. Questa tesi sviluppa un framework di modellazione a ordine ridotto (ROM) che integra un metodo agli elementi di contorno (BEM) per la diffusione acustica con un’analisi sorgente–risposta basata sul resolvent, identificando i principali percorsi con cui la turbolenza eccita vibrazioni strutturali e suono irradiato. Il solver BEM impone condizioni al contorno fluido–struttura accoppiate per piastre rigide ed elastiche, permettendo il calcolo accurato dei campi diffusi e della direttività a distanza. La validazione su casi benchmark conferma l’accuratezza del metodo, riproducendo comportamenti compatto e non compatto, picchi di risonanza e pattern di radiazione. Nel regime compatto l’elasticità è trascurabile, mentre in quello non compatto le risonanze strutturali risultano decisive: la flessibilità può sopprimere il rumore a bassi numeri di Mach, ma amplificarlo vicino alla risonanza. L’analisi mostra l’importanza delle forzature localizzate ai bordi: i modi resolvent rivelano come poche coppie input–output dominino la risposta acustica. Questa struttura a basso rango spiega l’efficacia dei trattamenti ai bordi e della regolazione mirata della compliance, consentendo predizioni ROM senza simulazioni complete della turbolenza. In sintesi, la tesi fornisce un framework validato e computazionalmente efficiente per analizzare l’accoppiamento flusso–struttura–acustica, indicando dove la forzatura è più efficace, quanto viene amplificata e come influisce sul suono a distanza. Costituisce una base per estensioni future a geometrie tridimensionali e flussi turbolenti realistici, supportando strategie pratiche di previsione e controllo del rumore aeroacustico.
Reduced-order modeling of acoustic scattering by finite elastic plates
PANDEY, ISHITA
2024/2025
Abstract
Aeroacoustic noise generated by turbulent flows interacting with solid surfaces remains a significant engineering challenge, requiring predictive and efficient tools for source identification and noise control. High-fidelity simulations can resolve sound generation mechanisms, but their cost limits their use in design optimization or broad parametric studies. This thesis develops a reduced-order modeling (ROM) framework that combines a boundary element method (BEM) for acoustic scattering with a resolvent-based source–response analysis to identify the main pathways through which turbulence excites structural vibrations and radiated sound. The BEM solver enforces coupled fluid–structure boundary conditions for rigid and elastic plates, enabling accurate computation of scattered fields and far-field directivity. Validation against benchmark cases confirms the method, reproducing compact and non-compact scattering behavior, resonance peaks, and radiation patterns. In the compact regime, elasticity has little effect, while in the non-compact regime structural resonances are decisive: flexibility can suppress noise through damping at low Mach numbers but can also amplify radiation near resonance. The analysis highlights the importance of edge-localized forcing. The resolvent modes show that a few optimal input–output pairs dominate the acoustic response. This low-rank structure explains the effectiveness of edge treatments and targeted compliance tuning, allowing ROM predictions without full turbulence simulations. Overall, the thesis provides a validated, computationally efficient framework to analyze and interpret flow–structure–acoustic coupling, showing where forcing is most effective, how strongly it is amplified, and how it shapes far-field sound. It establishes a foundation for future extensions to three-dimensional geometries and realistic turbulent inflows, supporting practical strategies for aeroacoustic noise prediction and control.| File | Dimensione | Formato | |
|---|---|---|---|
|
2025_10_Pandey.pdf
accessibile in internet per tutti
Descrizione: Master's Thesis Full Text
Dimensione
10.64 MB
Formato
Adobe PDF
|
10.64 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/244034