This thesis investigates the structural behaviour of timber–concrete composite (TCC) systems in bridge applications, with a particular focus on parametric modelling. The research aims to address the limited optimisation of modelling and verification procedures for TCC bridges and to develop an efficient computational workflow suitable for practical application. It also examines how partial composite action resulting from shear connection, as well as time-dependent behaviours of TCC members, including creep and shrinkage, affect overall structural performance. The computational methodology was developed by coupling Grasshopper, used for parametric modelling, and SOFiSTiK, used for finite element analysis. The workflow was validated through calibration against analytical solutions for simply supported beams and then applied to the case study of the three-span cantilever TCC footbridge over the River Neckar in Germany. The construction stage analysis, serviceability and ultimate limit state verifications and dynamic assessments of pedestrian-induced vibrations were conducted in compliance with Eurocode requirements. The findings confirm that the proposed workflow reduces modelling effort and error risk while enabling rapid iteration of design alternatives. The results of the structural analyses indicated that the stresses, shear connection capacity and deck accelerations remain within permissible limits. Additionally, the presented parametric studies outlined both the advantages of parametric modelling and the sensitivity of bridge response to alignment and connection stiffness. This research demonstrates that TCC systems are a viable and sustainable alternative to conventional reinforced concrete or steel bridges, offering lower environmental impact and improved material efficiency. It further provides a validated workflow that can be integrated into engineering practice to enable more efficient and reliable analysis and optimisation of TCC bridges.
Questa tesi indaga il comportamento strutturale dei sistemi compositi legno–calcestruzzo (TCC) nelle applicazioni ai ponti, con particolare attenzione alla modellazione parametrica. La ricerca si propone di affrontare la limitata ottimizzazione delle procedure di modellazione e verifica dei ponti TCC e di sviluppare un flusso di lavoro computazionale efficiente, adatto all’applicazione pratica. Viene inoltre analizzato come l’azione composita parziale, dovuta al collegamento a taglio, nonché i comportamenti dipendenti dal tempo degli elementi TCC, inclusi scorrimento viscoso e ritiro, influenzino le prestazioni strutturali complessive. La metodologia computazionale è stata sviluppata accoppiando Grasshopper, utilizzato per la modellazione parametrica, e SOFiSTiK, utilizzato per l’analisi agli elementi finiti. Il flusso di lavoro è stato validato tramite calibrazione con soluzioni analitiche per travi semplicemente appoggiate e successivamente applicato al caso studio della passerella pedonale a sbalzo a tre campate in TCC sul fiume Neckar in Germania. L’analisi della fase costruttiva, le verifiche agli stati limite di esercizio e ultimi, e le valutazioni dinamiche delle vibrazioni indotte dai pedoni sono state condotte in conformità ai requisiti dell’Eurocodice. I risultati confermano che il flusso di lavoro proposto riduce l’impegno di modellazione e il rischio di errore, consentendo al contempo una rapida iterazione delle alternative progettuali. Le analisi strutturali hanno evidenziato che le tensioni, la capacità dei collegamenti a taglio e le accelerazioni dell’impalcato rimangono entro i limiti ammissibili. Inoltre, gli studi parametrici presentati hanno messo in luce sia i vantaggi della modellazione parametrica, sia la sensibilità della risposta del ponte all’allineamento e alla rigidezza dei collegamenti. Questa ricerca dimostra che i sistemi TCC rappresentano un’alternativa valida e sostenibile ai ponti convenzionali in calcestruzzo armato o acciaio, offrendo un minore impatto ambientale e una maggiore efficienza nell’uso dei materiali. Fornisce inoltre un flusso di lavoro validato, integrabile nella pratica ingegneristica, che consente un’analisi e un’ottimizzazione dei ponti TCC più efficienti e affidabili.
Parametric modelling and analysis of a timber-concrete composite footbridge
Liakina, Alexandra
2024/2025
Abstract
This thesis investigates the structural behaviour of timber–concrete composite (TCC) systems in bridge applications, with a particular focus on parametric modelling. The research aims to address the limited optimisation of modelling and verification procedures for TCC bridges and to develop an efficient computational workflow suitable for practical application. It also examines how partial composite action resulting from shear connection, as well as time-dependent behaviours of TCC members, including creep and shrinkage, affect overall structural performance. The computational methodology was developed by coupling Grasshopper, used for parametric modelling, and SOFiSTiK, used for finite element analysis. The workflow was validated through calibration against analytical solutions for simply supported beams and then applied to the case study of the three-span cantilever TCC footbridge over the River Neckar in Germany. The construction stage analysis, serviceability and ultimate limit state verifications and dynamic assessments of pedestrian-induced vibrations were conducted in compliance with Eurocode requirements. The findings confirm that the proposed workflow reduces modelling effort and error risk while enabling rapid iteration of design alternatives. The results of the structural analyses indicated that the stresses, shear connection capacity and deck accelerations remain within permissible limits. Additionally, the presented parametric studies outlined both the advantages of parametric modelling and the sensitivity of bridge response to alignment and connection stiffness. This research demonstrates that TCC systems are a viable and sustainable alternative to conventional reinforced concrete or steel bridges, offering lower environmental impact and improved material efficiency. It further provides a validated workflow that can be integrated into engineering practice to enable more efficient and reliable analysis and optimisation of TCC bridges.| File | Dimensione | Formato | |
|---|---|---|---|
|
2025_10_Liakina_Thesis_01.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: thesis text
Dimensione
18.44 MB
Formato
Adobe PDF
|
18.44 MB | Adobe PDF | Visualizza/Apri |
|
2025_10_Liakina_Executive Summary_02.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: executive summary
Dimensione
1.59 MB
Formato
Adobe PDF
|
1.59 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/244038