There is an increasing demand for tools capable of selectively modulating the functions of non-excitable cells with high spatial and temporal precision. Conjugated polymers possess unique physical and optical properties determined by their molecular structure, making them valuable for optically regulating cellular functions. The combination of light stimulation and organic semiconductor technology ensures minimal invasiveness, full reversibility, and the ability to function without an external electrical bias. In particular, poly(3-hexylthiophene-2,5-diyl) (P3HT)-based nanostructured interfaces offer a promising solution for controlling biological activity. P3HT-based nanoparticles (NPs) in fact act as exogenous, intracellular phototransductors: when stimulated by visible light, they react with oxygen releasing reactive oxygen species (ROS) which turns into a modulation of the behaviour of cells, by altering their membrane potential and/or by affecting their physiological metabolism and redox state. This research focuses on the production and characterization of three different types of P3HT-based NPs, all of which exhibit good colloidal stability, a hydrodynamic diameter ranging from 50 nm to 300 nm, and a negatively charged surface. These NPs efficiently absorb green light and emit in the red spectrum while supporting charge photo-generation. Additionally, their nanostructured nature makes them particularly effective for interfacing with and adapting to the intricate nanoscale features of living tissues. The biomedical applications of these NPs were explored in both cardiovascular and epithelial contexts. With increasing life expectancy and aging populations, addressing conditions such as aortic stenosis, vascular regeneration following myocardial infarction, and enhanced wound healing has become a priority. In cardiovascular applications, both in vitro and in vivo studies demonstrated the effectiveness of P3HT-based NPs. Selective cell targeting capability was achieved by ad hoc functionalization. Localization of NPs was assessed ex-vivo by confocal microscopy. Importantly, treatment with NPs did not show any sign of toxicity, thus fully confirming the suitability of P3HT-based NPs for chronic in vivo use. NPs were delivered to mice and pigs, and in both cases light stimulation protocols were successfully optimized in order to avoid phototoxic damage upon long-term stimulation. In vivo NPs photoexcitation induces statistically significant modulation of physiological activity and may represent a breakthrough tool in the treatment of cardiovascular disease. In the field of epithelial applications, the role of P3HT-based NPs in wound healing was investigated. The wound healing process involves accelerated proliferation, differentiation, and apoptosis of keratinocytes, the predominant cells responsible for the continuous renewal of the epidermis, the outermost layer of the skin. Fibroblasts, which contribute to tissue repair, were also studied. Nanostructured devices based on conjugated polymers responsive to green light were used to promote re-epithelialization of wound sites. A scratch assay was conducted to evaluate the ability of keratinocytes to migrate and close wounds. Cells treated with NPs and stimulated by light exhibited significantly enhanced migration compared to control conditions. Recent results using three-dimensional skin models further confirmed that stimulated NPs significantly modulate cell physiological behaviour, in fully biocompatible operating conditions. Within the perspective of a clinical translation, based on these results, research has progressed toward the development of a tool designed for ease of handling and storage: a biodegradable patch composed of a hydrogel based on a natural polymer integrated with organic NPs. Both NPs-loaded and NPs-free patches were fully characterized. Following biocompatibility first assessment, mechanical, thermal, rheological and swelling analyses revealed no significant differences between the two patch formulations. The effectiveness of these patches on a skin wound model will be further investigated by examining their impact on wound closure rate and area reduction. In conclusion, P3HT-based nanostructured devices hold great potential for advancing regenerative medicine. Their ability to interact with biological tissues in a non-invasive, reversible, and controlled manner makes them valuable tools for therapeutic applications. Future research should focus on optimizing their long-term biocompatibility, fine-tuning their functionalization for specific cell types, and exploring their scalability for clinical applications. With continued development, these nanostructured interfaces may pave the way for innovative treatments in cardiovascular regeneration, wound healing, and beyond.
Si registra una crescente domanda di strumenti in grado di modulare selettivamente le funzioni delle cellule non eccitabili con elevata precisione spaziale e temporale. I polimeri coniugati presentano proprietà fisiche e ottiche uniche, determinate dalla loro struttura molecolare, che li rendono particolarmente adatti alla regolazione ottica delle funzioni cellulari. La combinazione tra stimolazione luminosa e tecnologia dei semiconduttori organici assicura minima invasività, piena reversibilità e la possibilità di operare senza l’applicazione di un bias elettrico esterno. In particolare, le interfacce nanostrutturate a base di poly(3-hexylthiophene-2,5-diyl) (P3HT) rappresentano una soluzione promettente per il controllo dell’attività biologica. Le nanoparticelle (NPs) a base di P3HT, infatti, agiscono come foto-trasduttori esogeni intracellulari: quando stimolate dalla luce visibile, reagiscono con l’ossigeno rilasciando specie reattive (ROS), che si traducono in una modulazione del comportamento cellulare, attraverso l’alterazione del potenziale di membrana e/o la modifica del metabolismo fisiologico e dello stato redox. La ricerca si concentra sulla produzione e caratterizzazione di tre differenti tipologie di NPs a base di P3HT, tutte dotate di buona stabilità colloidale, diametro idrodinamico compreso tra 50 nm e 300 nm e superficie a carica negativa. Tali NPs assorbono efficientemente la luce verde ed emettono nello spettro rosso, supportando al contempo la foto-generazione di carica. Inoltre, la loro natura nanostrutturata le rende particolarmente efficaci nell’interfacciarsi e adattarsi alle complesse caratteristiche nanoscopiche dei tessuti viventi. Le applicazioni biomediche di queste NPs sono state esplorate sia in ambito cardiovascolare che epiteliale. Con l’aumento dell’aspettativa di vita e l’invecchiamento della popolazione, affrontare condizioni quali la stenosi aortica, la rigenerazione vascolare post-infarto miocardico e il miglioramento della guarigione delle ferite assume una rilevanza prioritaria. Nel contesto cardiovascolare, studi in-vitro e in-vivo hanno dimostrato l’efficacia delle NPs a base di P3HT. La capacità di targeting selettivo delle cellule è stata ottenuta mediante funzionalizzazioni specifiche. La localizzazione delle NPs è stata verificata ex-vivo tramite microscopia confocale. È importante sottolineare che il trattamento con NPs non ha evidenziato segni di tossicità, confermando pienamente l’idoneità delle NPs a base di P3HT per un impiego cronico in vivo. Le NPs sono state somministrate a modelli murini e suini e, in entrambi i casi, i protocolli di stimolazione luminosa sono stati ottimizzati con successo per evitare danni fototossici in seguito a stimolazioni prolungate. L’eccitazione fotoindotta delle NPs in-vivo ha determinato una modulazione statisticamente significativa dell’attività fisiologica, ponendo le basi per un potenziale strumento innovativo nel trattamento delle patologie cardiovascolari. Per quanto riguarda le applicazioni epiteliali, è stato studiato il ruolo delle NPs a base di P3HT nella guarigione delle ferite. Il processo di wound healing comporta un’accelerata proliferazione, differenziazione e apoptosi dei cheratinociti, le principali cellule responsabili del rinnovamento continuo dell’epidermide, lo strato più esterno della cute. Sono stati studiati anche i fibroblasti, che contribuiscono alla riparazione tissutale. Dispositivi nanostrutturati basati su polimeri coniugati sensibili alla luce verde sono stati impiegati per promuovere la riepitelizzazione delle aree lesionate. Un saggio di scratch è stato condotto per valutare la capacità migratoria dei cheratinociti e la chiusura delle ferite. Le cellule trattate con NPs e stimolate con luce hanno mostrato una migrazione significativamente maggiore rispetto alle condizioni di controllo. Risultati recenti ottenuti mediante modelli tridimensionali di pelle hanno ulteriormente confermato che le NPs stimolate modulano in maniera significativa il comportamento fisiologico cellulare, in condizioni operative completamente biocompatibili. In un’ottica traslazionale, sulla base di questi risultati, la ricerca si è orientata verso lo sviluppo di uno strumento maneggevole e facilmente conservabile: un cerotto biodegradabile costituito da un idrogel a base di polimero naturale integrato con NPs organiche. Sia i cerotti caricati con NPs sia quelli privi di NPs sono stati pienamente caratterizzati. Le prime valutazioni di biocompatibilità, unitamente ad analisi meccaniche, termiche, reologiche e di rigonfiamento, non hanno evidenziato differenze significative tra le due formulazioni. L’efficacia di questi cerotti in un modello di ferita cutanea sarà ulteriormente indagata attraverso la valutazione della velocità di chiusura e della riduzione dell’area lesionata. In conclusione, i dispositivi nanostrutturati a base di P3HT mostrano un notevole potenziale per il progresso della medicina rigenerativa. La loro capacità di interagire con i tessuti biologici in modo non invasivo, reversibile e controllato li rende strumenti di grande valore per applicazioni terapeutiche. Le future ricerche dovranno focalizzarsi sull’ottimizzazione della biocompatibilità a lungo termine, sulla messa a punto di strategie di funzionalizzazione per specifici tipi cellulari e sull’esplorazione della scalabilità verso applicazioni cliniche. Con un ulteriore sviluppo, queste interfacce nanostrutturate potranno aprire la strada a trattamenti innovativi nella rigenerazione cardiovascolare, nella guarigione delle ferite e oltre.
Nanostructured P3HT interfaces: unlocking the potential to influence cell fate
VILLANO, ANTHEA
2024/2025
Abstract
There is an increasing demand for tools capable of selectively modulating the functions of non-excitable cells with high spatial and temporal precision. Conjugated polymers possess unique physical and optical properties determined by their molecular structure, making them valuable for optically regulating cellular functions. The combination of light stimulation and organic semiconductor technology ensures minimal invasiveness, full reversibility, and the ability to function without an external electrical bias. In particular, poly(3-hexylthiophene-2,5-diyl) (P3HT)-based nanostructured interfaces offer a promising solution for controlling biological activity. P3HT-based nanoparticles (NPs) in fact act as exogenous, intracellular phototransductors: when stimulated by visible light, they react with oxygen releasing reactive oxygen species (ROS) which turns into a modulation of the behaviour of cells, by altering their membrane potential and/or by affecting their physiological metabolism and redox state. This research focuses on the production and characterization of three different types of P3HT-based NPs, all of which exhibit good colloidal stability, a hydrodynamic diameter ranging from 50 nm to 300 nm, and a negatively charged surface. These NPs efficiently absorb green light and emit in the red spectrum while supporting charge photo-generation. Additionally, their nanostructured nature makes them particularly effective for interfacing with and adapting to the intricate nanoscale features of living tissues. The biomedical applications of these NPs were explored in both cardiovascular and epithelial contexts. With increasing life expectancy and aging populations, addressing conditions such as aortic stenosis, vascular regeneration following myocardial infarction, and enhanced wound healing has become a priority. In cardiovascular applications, both in vitro and in vivo studies demonstrated the effectiveness of P3HT-based NPs. Selective cell targeting capability was achieved by ad hoc functionalization. Localization of NPs was assessed ex-vivo by confocal microscopy. Importantly, treatment with NPs did not show any sign of toxicity, thus fully confirming the suitability of P3HT-based NPs for chronic in vivo use. NPs were delivered to mice and pigs, and in both cases light stimulation protocols were successfully optimized in order to avoid phototoxic damage upon long-term stimulation. In vivo NPs photoexcitation induces statistically significant modulation of physiological activity and may represent a breakthrough tool in the treatment of cardiovascular disease. In the field of epithelial applications, the role of P3HT-based NPs in wound healing was investigated. The wound healing process involves accelerated proliferation, differentiation, and apoptosis of keratinocytes, the predominant cells responsible for the continuous renewal of the epidermis, the outermost layer of the skin. Fibroblasts, which contribute to tissue repair, were also studied. Nanostructured devices based on conjugated polymers responsive to green light were used to promote re-epithelialization of wound sites. A scratch assay was conducted to evaluate the ability of keratinocytes to migrate and close wounds. Cells treated with NPs and stimulated by light exhibited significantly enhanced migration compared to control conditions. Recent results using three-dimensional skin models further confirmed that stimulated NPs significantly modulate cell physiological behaviour, in fully biocompatible operating conditions. Within the perspective of a clinical translation, based on these results, research has progressed toward the development of a tool designed for ease of handling and storage: a biodegradable patch composed of a hydrogel based on a natural polymer integrated with organic NPs. Both NPs-loaded and NPs-free patches were fully characterized. Following biocompatibility first assessment, mechanical, thermal, rheological and swelling analyses revealed no significant differences between the two patch formulations. The effectiveness of these patches on a skin wound model will be further investigated by examining their impact on wound closure rate and area reduction. In conclusion, P3HT-based nanostructured devices hold great potential for advancing regenerative medicine. Their ability to interact with biological tissues in a non-invasive, reversible, and controlled manner makes them valuable tools for therapeutic applications. Future research should focus on optimizing their long-term biocompatibility, fine-tuning their functionalization for specific cell types, and exploring their scalability for clinical applications. With continued development, these nanostructured interfaces may pave the way for innovative treatments in cardiovascular regeneration, wound healing, and beyond.| File | Dimensione | Formato | |
|---|---|---|---|
|
2025_10_Villano.pdf
non accessibile
Descrizione: Testo della tesi
Dimensione
3.4 MB
Formato
Adobe PDF
|
3.4 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/244477