The integration of hydrogen and other carbon-neutral fuels in spark-ignition (SI) internal combustion engines (ICEs) is a promising solution to reduce greenhouse gas emissions from the transport sector. Nevertheless, the peculiar properties of these fuels pose several challenges for their implementation in existing engine technologies. Therefore, adequate research and development efforts are needed to optimize engine performance with alternative fuels. To achieve this, advanced computational fluid dynamics (CFD) models can be employed to simulate the complex physical and chemical processes occurring in the engine, providing insights into the effects of different fuels and operating conditions on engine performance and emissions. This thesis aims to provide a comprehensive analysis of some of the most critical aspects of the numerical modeling of SI ICEs run on hydrogen and carbon-neutral fuels. Of the various critical aspects of engine operation, three main topics are addressed: mixture preparation in hydrogen (H2) direct injection (DI) engines, the ignition dynamics and flame development of slow-burning mixtures, and the combustion dynamics of ultra-lean H2 flames. Within this context, a series of advanced numerical models are developed to improve the accuracy and reliability of CFD simulations, implemented in the open-source CFD toolbox OpenFOAM. First, the mixture preparation process in H2 DI engines is explored. Different aspects of numerical modeling are investigated in a research optical engine, assessing their impact on air-fuel mixing. Then, an advanced numerical framework is proposed for reducing the computational time of simulations of H2 DI, which is later employed to investigate the potential in retrofitting swirl-type GDI injectors for H2 injection. Next, the ignition and early flame development of EGR-diluted mixtures is investigated, up to the onset of misfire. A detailed analysis of the ignition process is performed in a research engine with measurements of the electrical circuit features. Then, an advanced ignition model is proposed to include the effects of stochastic restrikes on the mean-cycle behavior of the discharge event, showing the importance of this phenomenon close to misfire. Finally, the combustion dynamics of ultra-lean H2 flames are analyzed in a light-duty research engine, investigating the effects of laminar flame speed prediction, thermodiffusive instabilities, and mesh refinement at walls on the correct prediction of burning rate and wall heat flux. Moreover, a combined experimental and numerical investigation is conducted in an optical engine into the flame-flow interaction and laminar-to-turbulent transition under slow-burning scenarios, to understand their sensitivity to the engine operating conditions.
L’utilizzo dell’idrogeno e di altri combustibili a basso impatto di carbonio nei motori a combustione interna ad accensione comandata (SI ICE) rappresenta una delle strategie pi`u promettenti per ridurre le emissioni di gas serra nel settore dei trasporti. Tuttavia, le particolari propriet`a di questi combustibili comportano sfide significative per la loro integrazione nelle tecnologie motoristiche attuali. Diventa quindi fondamentale un intenso lavoro di ricerca e sviluppo volto a ottimizzare le prestazioni dei motori alimentati con combustibili alternativi. A tale scopo, la modellazione fluidodinamica computazionale (CFD) offre uno strumento avanzato per simulare i complessi fenomeni fisici e chimici che avvengono all’interno del motore, permettendo di comprendere come le diverse tipologie di combustibile e le condizioni operative influenzino le prestazioni e le emissioni. Questa tesi propone un’analisi approfondita di alcuni tra gli aspetti pi`u critici della modellazione numerica dei motori SI ICE alimentati a idrogeno e combustibili a basso impatto di carbonio. Il lavoro si concentra su tre tematiche principali: la formazione della miscela nei motori a iniezione diretta di idrogeno (H2 DI), la dinamica di accensione e la fase iniziale di sviluppo della fiamma in miscele a lenta combustione, e il comportamento della combustione in condizioni ultra-magre di idrogeno. In questo contesto, sono stati sviluppati e implementati nella piattaforma open-source OpenFOAM diversi modelli numerici avanzati, con l’obiettivo di migliorare l’accuratezza e l’affidabilit`a delle simulazioni CFD. In una prima fase, viene analizzato il processo di formazione della miscela nei motori H2 DI, studiando l’effetto di differenti approcci di modellazione numerica in un motore ottico da ricerca. Su questa base, viene poi sviluppato un framework numerico capace di ridurre i tempi di calcolo delle simulazioni di iniezione diretta di idrogeno, che viene successivamente impiegato per valutare la possibilit`a di riadattare iniettori GDI di tipo swirl in motori ad idrogeno. Successivamente, l’attenzione si sposta sul processo di accensione e sullo sviluppo iniziale della fiamma in miscele diluite con EGR, fino alle condizioni limite di mancata accensione (misfire). Le analisi sono condotte su un motore da ricerca, integrando misure sperimentali del circuito elettrico della candela. Sulla base di tali osservazioni, viene proposto un modello di accensione avanzato che tiene conto degli effetti dei restrike stocastici, mostrando come questi influenzino il comportamento medio-ciclo del fenomeno di scarica, in particolare in prossimità del misfire. Infine, vengono studiate le dinamiche di combustione di idrogeno in condizioni ultra-magre in un motore da ricerca light-duty. L’analisi si concentra sugli effetti della previsione della velocità di fiamma laminare, delle instabilità termo-diffusive e del raffinamento della griglia nelle regioni prossime alle pareti, al fine di valutare la loro influenza sulla corretta previsione del processo di combustione e delle perdite termiche a parete. Inoltre, uno studio combinato sperimentale e numerico condotto su un motore ottico approfondisce l’interazione tra fiamma e campo di moto e la transizione dal regime laminare a quello turbolento in scenari di combustione lenta, evidenziandone la sensibilità alle condizioni operative del motore.
CFD modelling of spark-ignition engines operated with hydrogen and carbon-neutral fuels
Ramognino, Federico
2024/2025
Abstract
The integration of hydrogen and other carbon-neutral fuels in spark-ignition (SI) internal combustion engines (ICEs) is a promising solution to reduce greenhouse gas emissions from the transport sector. Nevertheless, the peculiar properties of these fuels pose several challenges for their implementation in existing engine technologies. Therefore, adequate research and development efforts are needed to optimize engine performance with alternative fuels. To achieve this, advanced computational fluid dynamics (CFD) models can be employed to simulate the complex physical and chemical processes occurring in the engine, providing insights into the effects of different fuels and operating conditions on engine performance and emissions. This thesis aims to provide a comprehensive analysis of some of the most critical aspects of the numerical modeling of SI ICEs run on hydrogen and carbon-neutral fuels. Of the various critical aspects of engine operation, three main topics are addressed: mixture preparation in hydrogen (H2) direct injection (DI) engines, the ignition dynamics and flame development of slow-burning mixtures, and the combustion dynamics of ultra-lean H2 flames. Within this context, a series of advanced numerical models are developed to improve the accuracy and reliability of CFD simulations, implemented in the open-source CFD toolbox OpenFOAM. First, the mixture preparation process in H2 DI engines is explored. Different aspects of numerical modeling are investigated in a research optical engine, assessing their impact on air-fuel mixing. Then, an advanced numerical framework is proposed for reducing the computational time of simulations of H2 DI, which is later employed to investigate the potential in retrofitting swirl-type GDI injectors for H2 injection. Next, the ignition and early flame development of EGR-diluted mixtures is investigated, up to the onset of misfire. A detailed analysis of the ignition process is performed in a research engine with measurements of the electrical circuit features. Then, an advanced ignition model is proposed to include the effects of stochastic restrikes on the mean-cycle behavior of the discharge event, showing the importance of this phenomenon close to misfire. Finally, the combustion dynamics of ultra-lean H2 flames are analyzed in a light-duty research engine, investigating the effects of laminar flame speed prediction, thermodiffusive instabilities, and mesh refinement at walls on the correct prediction of burning rate and wall heat flux. Moreover, a combined experimental and numerical investigation is conducted in an optical engine into the flame-flow interaction and laminar-to-turbulent transition under slow-burning scenarios, to understand their sensitivity to the engine operating conditions.| File | Dimensione | Formato | |
|---|---|---|---|
|
Thesis_Final.pdf
accessibile in internet per tutti
Dimensione
86.3 MB
Formato
Adobe PDF
|
86.3 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/244797