The commercialization of the Vanadium Redox Flow Battery technology, a promising solution for stationary energy storage, is hindered by some technological issues, among which mass transport phenomena that take place through the membrane and in the porous electrode. The former lead to battery capacity loss and electrolyte volume variation, while the latter strongly affect reactions overpotential and auxiliary pressure drop; these aspects assume greater significance when devices are scaled up to larger active areas. In this Ph.D. dissertation, mass transport phenomena are investigated through a combined experimental and modeling approach. The study of mass transport phenomena through the membrane leads to capacity decay mitigation and the elimination of electrolyte volume variation. The investigation of mass transport within the electrode enables the development of a flow field architecture that is scaled to dimensions representative of a real device, resulting in performance enhancement with no increase in pressure drop.
La commercializzazione della tecnologia delle batterie a flusso redox al vanadio , una promettente soluzione per l’accumulo stazionario di energia, è ostacolata da alcune problematiche tecnologiche, tra cui i fenomeni di trasporto di massa che avvengono attraverso la membrana e all’interno dell’elettrodo poroso. I primi causano una perdita di capacità della batteria e una variazione del volume dell’elettrolita, mentre i secondi influenzano fortemente la sovratensione delle reazioni e la caduta di pressione; questi aspetti assumono un’importanza ancora maggiore quando i dispositivi vengono scalati verso aree attive più grandi. In questa tesi di dottorato, i fenomeni di trasporto di massa vengono studiati attraverso un approccio combinato sperimentale e modellistico. L’analisi del trasporto di massa attraverso la membrana consente di mitigare il decadimento della capacità e di eliminare la variazione di volume dell’elettrolita. Lo studio del trasporto di massa all’interno dell’elettrodo, invece, permette di sviluppare un’architettura del distributore scalata a dimensioni rappresentative di un dispositivo reale, ottenendo un miglioramento delle prestazioni senza aumento della caduta di pressione.
Experimental and modeling analysis of mass transport phenomena in VRFB: towards crossover mitigation and the development of a scalable flow field
Toja, Francesco
2024/2025
Abstract
The commercialization of the Vanadium Redox Flow Battery technology, a promising solution for stationary energy storage, is hindered by some technological issues, among which mass transport phenomena that take place through the membrane and in the porous electrode. The former lead to battery capacity loss and electrolyte volume variation, while the latter strongly affect reactions overpotential and auxiliary pressure drop; these aspects assume greater significance when devices are scaled up to larger active areas. In this Ph.D. dissertation, mass transport phenomena are investigated through a combined experimental and modeling approach. The study of mass transport phenomena through the membrane leads to capacity decay mitigation and the elimination of electrolyte volume variation. The investigation of mass transport within the electrode enables the development of a flow field architecture that is scaled to dimensions representative of a real device, resulting in performance enhancement with no increase in pressure drop.| File | Dimensione | Formato | |
|---|---|---|---|
|
2025_10_Toja.pdf
non accessibile
Dimensione
15.03 MB
Formato
Adobe PDF
|
15.03 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/244857