This thesis presents a comprehensive methodological framework to support the early stage design of Urban Renewable Energy Communities (URECs), addressing the growing need for integrated tools that can assist public administrations in developing preliminary planning strategies at the district level. The core of the research investigates how a combinatorial, multi-objective optimisation model, grounded in dynamic energy modelling, can effectively address the spatial and technical configuration of URECs, while accounting for trade-offs between technical, economic, and environmental performance.The methodology integrates physics-based Urban Building Energy Modelling (UBEM) simulations with a customised evolutionary optimisation algorithm based on the Non dominated Sorting Genetic Algorithm II (NSGA-II). It includes an optional clustering pre-processing phase to manage computational or planning complexity and a decision making layer that employs multi-criteria decision-making techniques for final solution selection. The framework is designed to be flexible and fully interoperable with different simulation platforms and input data types, thus ensuring broad applicability and replicability. The optimisation algorithm is capable of evaluating variable photovoltaic (PV) capacity scenarios and degrees of electrification, while delivering results in the form of performance indicators at both building and district scales.The model is tested on a real case study in Milan, where results confirm its effectiveness in identifying non-intuitive optimal configurations. These do not necessarily align with full electrification or maximum PV deployment but rather reflect a balanced trade-off among competing objectives. The framework proves robust across different optimisation settings and applies to districts with varying sizes and compositions.
Questa tesi presenta un quadro metodologico completo a supporto della fase di progettazione preliminare delle Comunità Energetiche Rinnovabili Urbane (UREC), rispondendo alla crescente esigenza di strumenti integrati in grado di assistere le amministrazioni pubbliche nello sviluppo di strategie di pianificazione preliminare a scala di quartiere. Il nucleo della ricerca indaga come un modello combinatorio di ottimizzazione multi-obiettivo, fondato sulla modellazione energetica dinamica, possa affrontare in modo efficace la configurazione spaziale e tecnica delle UREC, tenendo conto dei compromessi tra prestazioni tecniche, economiche e ambientali. La metodologia integra simulazioni energetiche basate su strumenti di modellazione urbana (Urban Building Energy Modelling -UBEM), con un algoritmo evolutivo di ottimizzazione sviluppato a partire dal Non-dominated Sorting Genetic Algorithm II (NSGA-II). Inoltre, la metodologia include una fase opzionale di pre-elaborazione mediante clustering, utile a gestire la complessità computazionale o pianificatoria, e uno applicativo decisionale che impiega tecniche di multi-criteria decision-making per la selezione finale delle soluzioni. Il framework è concepito per essere flessibile e pienamente interoperabile con diverse piattaforme di simulazione e tipologie di dati in ingresso, garantendo così ampia applicabilità e replicabilità. L’algoritmo di ottimizzazione è in grado di valutare scenari variabili di capacità fotovoltaica e strategie di elettrificazione, restituendo risultati quantitativi sotto forma di indicatori di prestazione a scala sia di edificio che di distretto. Il modello è stato testato su un caso studio reale situato a Milano, i cui risultati confermano l’efficacia dell’approccio nell’individuare configurazioni ottimali non intuitive. Queste non coincidono necessariamente con la piena elettrificazione o con la massima installazione fotovoltaica, ma riflettono piuttosto un equilibrio tra obiettivi in competizione. Il framework si dimostra robusto in diversi contesti di ottimizzazione e applicabile a distretti di dimensioni e composizioni variabili.
A UBEM-based multicriteria methodology for optimising user aggregation in the early-stage design of Urban Renewable Energy Communities URECs
FERRONI, SIBILLA
2024/2025
Abstract
This thesis presents a comprehensive methodological framework to support the early stage design of Urban Renewable Energy Communities (URECs), addressing the growing need for integrated tools that can assist public administrations in developing preliminary planning strategies at the district level. The core of the research investigates how a combinatorial, multi-objective optimisation model, grounded in dynamic energy modelling, can effectively address the spatial and technical configuration of URECs, while accounting for trade-offs between technical, economic, and environmental performance.The methodology integrates physics-based Urban Building Energy Modelling (UBEM) simulations with a customised evolutionary optimisation algorithm based on the Non dominated Sorting Genetic Algorithm II (NSGA-II). It includes an optional clustering pre-processing phase to manage computational or planning complexity and a decision making layer that employs multi-criteria decision-making techniques for final solution selection. The framework is designed to be flexible and fully interoperable with different simulation platforms and input data types, thus ensuring broad applicability and replicability. The optimisation algorithm is capable of evaluating variable photovoltaic (PV) capacity scenarios and degrees of electrification, while delivering results in the form of performance indicators at both building and district scales.The model is tested on a real case study in Milan, where results confirm its effectiveness in identifying non-intuitive optimal configurations. These do not necessarily align with full electrification or maximum PV deployment but rather reflect a balanced trade-off among competing objectives. The framework proves robust across different optimisation settings and applies to districts with varying sizes and compositions.| File | Dimensione | Formato | |
|---|---|---|---|
|
Ferroni_PhD_Thesis_STEN2025_Reviewed.pdf
non accessibile
Dimensione
4.14 MB
Formato
Adobe PDF
|
4.14 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/244897