ThisworkinvestigatesaGeneticAlgorithmbasedapproachforoptimizingthecomposition of fixed-income portfolios aimed at replicating bond indices under realistic market and regulatory constraints. Traditional optimization techniques for index tracking often fail to capture the discrete, nonlinear, and highly constrained nature of bond markets, where issues such as minimum tradable quantities, liquidity limits, and restricted trading axes play a crucial role. To address these tasks, this study implements the meta-heuristic framework proposed in the reference paper, introducing a comprehensive Violation Constraint Handling VCH mechanism that allows the Genetic Algorithm to balance feasibility and optimality during the search process. Multiple evolutionary profiles are tested — including fixed, determin- istic [4], and adaptive [3] crossover and mutation strategies — across both subscription and redemption scenarios. The model is developed in Python and validated through extensive Monte Carlo ex- periments on synthetic and real-market bond universes, reproducing the statistical and distributional properties presented in the original paper. Key performance metrics such as duration-times-spread deviation, modified duration deviation, on-axis ratio and uninvested capital ratio are analyzed alongside higher-moment statistics and winsorized z-scores to assess robustness. Results confirm that adaptive and deterministic GA variants outperform fixed-rate con- figurations in terms of convergence stability and constraint compliance, providing efficient and interpretable solutions for large-scale bond index replication problems. The proposed framework demonstrates flexibility for further extensions in asset-liability management, sustainable bond selection, and real-time portfolio calibration in fixed-income markets.
Questo lavoro analizza un approccio basato su Algoritmi Genetici (Genetic Algorithms, GA) per l’ottimizzazione della composizione di portafogli obbligazionari finalizzati alla replicazione di indici obbligazionari in presenza di vincoli di mercato e regolamentari realistici. Le tecniche di ottimizzazione tradizionali per l’index tracking risultano spesso inadeguate a cogliere la natura discreta, non lineare e fortemente vincolata dei mercati obbligazionari, nei quali fattori come le quantità minime negoziabili, i limiti di liquidità e le restrizioni sugli assi di negoziazione rivestono un ruolo determinante. Per rispondere in maniera sistematica a tali problematiche, il presente studio implementa e adatta il quadro metaeuristico di riferimento, introducendo un sofisticato meccanismo di Violation Constraint Handling (VCH) volto a garantire un equilibrio ottimale tra fat- tibilità e prestazione dell’algoritmo genetico durante la fase di ottimizzazione. Sono stati testati diversi profili evolutivi — tra cui strategie di crossover e mutazione fisse, deter- ministiche [4] e adattive [3] — in differenti scenari di sottoscrizione (acquisto) e rimborso (vendita). IlmodelloèstatosviluppatointeramenteinPythonevalidatoattraversoestesesimulazioni Monte Carlo condotte su universi obbligazionari sintetici, riproducendo le principali pro- prietà statistiche e distributive presentate nell’articolo originale. Le metriche chiave di performance — quali duration-times-spread deviation, modified duration deviation, on- axis ratio e uninvested capital ratio - sono state analizzate insieme a statistiche di ordine superiore e ai punteggi z winsorizzati, al fine di valutarne la robustezza e stabilità. I risultati confermano che le varianti adattive e deterministiche dell’algoritmo genetico superano le configurazioni a tasso fisso in termini di velocità di convergenza, stabilità e rispetto dei vincoli, fornendo soluzioni efficienti e interpretabili per la replicazione di indici obbligazionari su larga scala. Il framework proposto si dimostra inoltre flessibile ed estendibile a contesti applicativi più ampi, come la gestione attivo-passiva (ALM), la selezione di obbligazioni sostenibili (ESG) e la calibrazione dinamica di portafogli a reddito fisso in tempo reale.
Bond index tracking with genetic algorithms
MARCHETTO, ERICA
2024/2025
Abstract
ThisworkinvestigatesaGeneticAlgorithmbasedapproachforoptimizingthecomposition of fixed-income portfolios aimed at replicating bond indices under realistic market and regulatory constraints. Traditional optimization techniques for index tracking often fail to capture the discrete, nonlinear, and highly constrained nature of bond markets, where issues such as minimum tradable quantities, liquidity limits, and restricted trading axes play a crucial role. To address these tasks, this study implements the meta-heuristic framework proposed in the reference paper, introducing a comprehensive Violation Constraint Handling VCH mechanism that allows the Genetic Algorithm to balance feasibility and optimality during the search process. Multiple evolutionary profiles are tested — including fixed, determin- istic [4], and adaptive [3] crossover and mutation strategies — across both subscription and redemption scenarios. The model is developed in Python and validated through extensive Monte Carlo ex- periments on synthetic and real-market bond universes, reproducing the statistical and distributional properties presented in the original paper. Key performance metrics such as duration-times-spread deviation, modified duration deviation, on-axis ratio and uninvested capital ratio are analyzed alongside higher-moment statistics and winsorized z-scores to assess robustness. Results confirm that adaptive and deterministic GA variants outperform fixed-rate con- figurations in terms of convergence stability and constraint compliance, providing efficient and interpretable solutions for large-scale bond index replication problems. The proposed framework demonstrates flexibility for further extensions in asset-liability management, sustainable bond selection, and real-time portfolio calibration in fixed-income markets.| File | Dimensione | Formato | |
|---|---|---|---|
|
Bond_Index_Tracking_with_Genetic_Algorithms.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Tesi Marchetto Erica
Dimensione
461.93 kB
Formato
Adobe PDF
|
461.93 kB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/245238