Understanding the dynamic behaviour of proteins—and being able to predict their conformational changes—is essential for elucidating their functional mechanisms. While all-atom Molecular Dynamics (MD) simulations represent the gold standard for modelling protein dynamics, they are computationally expensive and often limited in their ability to explore large-scale conformational transitions. In this thesis, a coarse-grained approach to protein dynamics is explored by coupling Brownian Dynamics (BD), governed by Langevin equations, with coarse-grained Elastic Network Models (ENMs), which approximate proteins as networks of harmonic springs connecting Cα atoms. The goal is to enhance sampling efficiency while maintaining structural realism by means of a suitable set of parameters that balances geometric accuracy with sufficient conformational flexibility. A systematic parametric study was conducted. Following an extensive exploration of the parameter space, an optimal combination of BD-ENM parameters was selected and validated by comparing the BD model’s Essential Dynamics (ED) against: (i) the Principal Components (PCs) from experimental ensembles, (ii) the observed conformational changes captured experimentally, (iii) the ED modes from atomistic MD trajectories. In several cases, a high agreement was observed—particularly for proteins exhibiting large-scale motions such as opening and closing transitions. The model was able to sample a diverse range of conformations within relatively short simulation times, demonstrating its potential as a fast yet informative tool for protein dynamics studies. It was also found to preserve the stereochemical properties of the protein structures, as confirmed through atomistic reconstruction and validation. Altogether, these results highlight the reliability and efficiency of the coarse-grained BD-ENM approach, suggesting strong potential for future applications. Although the BD-ENM framework proved effective and computationally efficient, opportunities for improvement remain, especially in refining the representation of long-range interactions within the ENM.
Comprendere il comportamento dinamico delle proteine – e riuscire a prevederne i cambiamenti conformazionali – è essenziale per chiarirne i meccanismi funzionali. Sebbene le simulazioni di Dinamica Molecolare (MD) a livello atomico rappresentino lo standard d’eccellenza per modellare la dinamica proteica, queste risultano computazionalmente onerose e limitate nella capacità di esplorare transizioni conformazionali su larga scala. In questa tesi si esplora un approccio a grana grossa alla dinamica proteica, combinando la Dinamica Browniana (BD), regolata dalle equazioni di Langevin, con modelli di rete elastica (ENM), che approssimano le proteine come reti di molle armoniche. L’obiettivo è migliorare l’efficienza del campionamento mantenendo un realismo strutturale, tramite un opportuno insieme di parametri che bilancino accuratezza geometrica e sufficiente flessibilità conformazionale. È stato condotto uno studio parametrico sistematico. Dopo un’esplorazione dello spazio dei parametri, è stata selezionata una combinazione ottimale di parametri BD-ENM, validata confrontando la Dinamica Essenziale (ED) del modello BD con: (i) le Componenti Principali (PC) derivate da insiemi sperimentali, (ii) i cambiamenti conformazionali osservati sperimentalmente, (iii) la Dinamica Essenziale ottenuta da traiettorie MD atomistiche. In diversi casi è stata osservata un’elevata concordanza – in particolare per proteine che mostrano movimenti su larga scala, come transizioni di apertura e chiusura. Il modello si è dimostrato capace di campionare un’ampia gamma di conformazioni in tempi di simulazione limitati, mostrando il suo potenziale come strumento informativo per lo studio della dinamica proteica. Inoltre, le proprietà stereochimiche della struttura proteica sono state preservate, come confermato dalla ricostruzione e validazione atomistica. Questi risultati supportano l’affidabilità dei modelli a grana grossa e ne suggeriscono il potenziale per ulteriori applicazioni. Sebbene il framework BD-ENM si sia rivelato efficace ed efficiente dal punto di vista computazionale, restano margini di miglioramento, specialmente nella rappresentazione delle interazioni a lungo raggio all’interno dell’ENM.
Coarse-grained Brownian Dynamics simulations for protein conformational sampling
Ruggeri, Enrica
2024/2025
Abstract
Understanding the dynamic behaviour of proteins—and being able to predict their conformational changes—is essential for elucidating their functional mechanisms. While all-atom Molecular Dynamics (MD) simulations represent the gold standard for modelling protein dynamics, they are computationally expensive and often limited in their ability to explore large-scale conformational transitions. In this thesis, a coarse-grained approach to protein dynamics is explored by coupling Brownian Dynamics (BD), governed by Langevin equations, with coarse-grained Elastic Network Models (ENMs), which approximate proteins as networks of harmonic springs connecting Cα atoms. The goal is to enhance sampling efficiency while maintaining structural realism by means of a suitable set of parameters that balances geometric accuracy with sufficient conformational flexibility. A systematic parametric study was conducted. Following an extensive exploration of the parameter space, an optimal combination of BD-ENM parameters was selected and validated by comparing the BD model’s Essential Dynamics (ED) against: (i) the Principal Components (PCs) from experimental ensembles, (ii) the observed conformational changes captured experimentally, (iii) the ED modes from atomistic MD trajectories. In several cases, a high agreement was observed—particularly for proteins exhibiting large-scale motions such as opening and closing transitions. The model was able to sample a diverse range of conformations within relatively short simulation times, demonstrating its potential as a fast yet informative tool for protein dynamics studies. It was also found to preserve the stereochemical properties of the protein structures, as confirmed through atomistic reconstruction and validation. Altogether, these results highlight the reliability and efficiency of the coarse-grained BD-ENM approach, suggesting strong potential for future applications. Although the BD-ENM framework proved effective and computationally efficient, opportunities for improvement remain, especially in refining the representation of long-range interactions within the ENM.| File | Dimensione | Formato | |
|---|---|---|---|
|
2025_12_Ruggeri_Tesi.pdf
non accessibile
Descrizione: Testo Tesi
Dimensione
25.88 MB
Formato
Adobe PDF
|
25.88 MB | Adobe PDF | Visualizza/Apri |
|
2025_12_Ruggeri_ExecutiveSummary.pdf
non accessibile
Descrizione: Testo Executive Summary
Dimensione
1.97 MB
Formato
Adobe PDF
|
1.97 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/245357