Africa’s energy systems are facing the dual challenge of meeting rapidly rising electricity demand while adapting to growing climatic and hydrological variability. At the same time, the continent is investing heavily in hydropower, which is expected to play a central role in achieving low-carbon development and expanding electricity access. This thesis investigates whether these hydropower-based systems can remain reliable and cost-effective under changing climate conditions between 2020 and 2050. The analysis combines two complementary approaches. The first is a climate-model-driven assessment, where river flows simulated by multiple Global Climate Models are translated into plant-level hydropower capacity factors and integrated into OSeMOSYS–TEMBA, a least-cost optimisation model of Africa’s energy system. The second is a scenario-neutral drought stress test, which employs the FIND (Frequency, Intensity, and Duration) model to generate synthetic droughts with controlled characteristics, testing system performance under extreme but plausible hydrological stress. Results show that although climate models produce substantial variation in local water availability, system-wide outcomes remain relatively stable. Socio-economic pathways SSPs have a stronger effect than hydrological differences, as demand growth largely drives investment patterns and emissions trajectories. The optimisation reallocates projects across basins to preserve efficiency even under drier conditions. Stress-test experiments indicate that the African power system is operationally resilient: even intensified droughts reduce cumulative hydropower generation by less than three percent, though they increase interannualvariability. Expanding the entire portfolio of planned hydropower projects can largely offset these losses but at the expense of higher capital costs and lower utilisation rates, revealing a trade-off between efficiency and resilience. The findings underscore the importance of integrating climate variability into long-term energy planning. Technological diversification and stronger regional grid interconnections emerge as key strategies to ensure that Africa’s ambitious hydropower expansion remains both economically viable and climate-resilient.
I sistemi energetici africani si trovano ad affrontare la duplice sfida di soddisfare una domanda di elettricità in rapido aumento, adattandosi al contempo alla crescente variabilità climatica e idrologica. Allo stesso tempo, il continente sta investendo fortemente nell’idroelettrico, che si prevede svolgerà un ruolo centrale nel raggiungimento di uno sviluppo a basse emissioni di carbonio e nell’espansione dell’accesso all’elettricità. Questa tesi indaga se questi sistemi basati sull’idroelettrico possano rimanere affidabili ed economicamente efficienti in condizioni climatiche mutevoli tra il 2020 e il 2050. L’analisi combina due approcci complementari. Il primo è una valutazione guidata dai modelli climatici, in cui le portate fluviali simulate da diversi Modelli Climatici Globali vengono tradotte in fattori di capacità idroelettrica a livello di impianto e integrate in OSeMOSYS–TEMBA, un modello di ottimizzazione dei costi minimi del sistema energetico africano. Il secondo è un test di stress scenario-neutrale rispetto alla siccità, che impiega il modello FIND (Frequency, Intensity, and Duration) per generare siccità sintetiche con caratteristiche controllate, testando le prestazioni del sistema sotto condizioni idrologiche estreme ma plausibili. I risultati mostrano che, sebbene i modelli climatici producano una variazione sostanziale nella disponibilità idrica locale, gli esiti complessivi a livello di sistema rimangono relativamente stabili. I percorsi socio-economici SSP hanno un effetto più marcato rispetto alle differenze idrologiche, poiché la crescita della domanda guida in gran parte i modelli di investimento e le traiettorie emissive. L’ottimizzazione rialloca i progetti tra i bacini per preservare l’efficienza anche in condizioni più secche. Gli esperimenti di stress test indicano che il sistema elettrico africano è operativamente resiliente: anche siccità più intense riducono la generazione idroelettrica cumulata di meno del tre percento, pur aumentando la variabilità interannuale. L’espansione dell’intero portafoglio di progetti idroelettrici pianificati può in larga misura compensare tali perdite, ma al prezzo di costi di capitale più elevati e tassi di utilizzo inferiori, rivelando un compromesso tra efficienza e resilienza. I risultati sottolineano l’importanza di integrare la variabilità climatica nella pianificazione energetica di lungo periodo. La diversificazione tecnologica e un rafforzamento delle interconnessioni della rete elettrica regionale emergono come strategie chiave per garantire che l’ambiziosa espansione idroelettrica africana rimanga al tempo stesso economicamente sostenibile e resiliente al clima.
Modelling the impacts of climate change and drought dynamics on hydropower and energy transition in Africa
Pelicci, Anna
2024/2025
Abstract
Africa’s energy systems are facing the dual challenge of meeting rapidly rising electricity demand while adapting to growing climatic and hydrological variability. At the same time, the continent is investing heavily in hydropower, which is expected to play a central role in achieving low-carbon development and expanding electricity access. This thesis investigates whether these hydropower-based systems can remain reliable and cost-effective under changing climate conditions between 2020 and 2050. The analysis combines two complementary approaches. The first is a climate-model-driven assessment, where river flows simulated by multiple Global Climate Models are translated into plant-level hydropower capacity factors and integrated into OSeMOSYS–TEMBA, a least-cost optimisation model of Africa’s energy system. The second is a scenario-neutral drought stress test, which employs the FIND (Frequency, Intensity, and Duration) model to generate synthetic droughts with controlled characteristics, testing system performance under extreme but plausible hydrological stress. Results show that although climate models produce substantial variation in local water availability, system-wide outcomes remain relatively stable. Socio-economic pathways SSPs have a stronger effect than hydrological differences, as demand growth largely drives investment patterns and emissions trajectories. The optimisation reallocates projects across basins to preserve efficiency even under drier conditions. Stress-test experiments indicate that the African power system is operationally resilient: even intensified droughts reduce cumulative hydropower generation by less than three percent, though they increase interannualvariability. Expanding the entire portfolio of planned hydropower projects can largely offset these losses but at the expense of higher capital costs and lower utilisation rates, revealing a trade-off between efficiency and resilience. The findings underscore the importance of integrating climate variability into long-term energy planning. Technological diversification and stronger regional grid interconnections emerge as key strategies to ensure that Africa’s ambitious hydropower expansion remains both economically viable and climate-resilient.| File | Dimensione | Formato | |
|---|---|---|---|
|
MScThesis_PelicciAnna.pdf
non accessibile
Dimensione
23.05 MB
Formato
Adobe PDF
|
23.05 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/245737