This thesis proposes an integrated guideline for the design and implementation of hybrid adaptive façade systems by combining climate-responsive design, Design for Manufacture and Assembly (DfMA), and Building Information Modeling (BIM). The study addresses current challenges in the construction sector, including climate change, increasing energy performance requirements, and the demand for more efficient design and fabrication processes. It develops a practical and replicable framework that translates environmental data into modular façade solutions ready for manufacturing and assembly. The research connects environmental analysis, parametric modeling, and fabrication planning within one coherent workflow. The proposed process includes four main phases: local climate study, parametric modeling and modular configuration, BIM- and DfMA-based fabrication and assembly planning, and lifecycle and maintenance strategies. Digital tools such as Ladybug, EnergyPlus, and Revit are used to link climate data with building performance and construction documentation, ensuring precision and coordination throughout the design process. The guideline is applied to the Digital Revolution House (DRH) project in Turin, Italy. The redesigned façade integrates vertical rotating louvers that adapt to the sun’s position to improve daylight and thermal comfort. Prefabricated modules were developed using DfMA principles and managed through BIM for fabrication, assembly, and long-term operation. The results demonstrate measurable improvements in energy efficiency, daylight quality, and construction accuracy. Overall, the study shows how the integration of BIM and DfMA can support the development of adaptive façade systems that are efficient, buildable, and responsive to local climate conditions, contributing to more sustainable and intelligent building envelopes.
Questa tesi propone una linea guida integrata per la progettazione e l’implementazione di sistemi di facciata ibridi e adattivi, combinando il design climaticamente reattivo con il Design for Manufacture and Assembly (DfMA) e il Building Information Modeling (BIM). La ricerca affronta le sfide attuali del settore delle costruzioni, tra cui il cambiamento climatico, l’aumento dei requisiti di efficienza energetica e la necessità di processi di progettazione e produzione più efficienti. Il lavoro sviluppa un quadro pratico e replicabile che traduce i dati ambientali in soluzioni di facciata modulari, pronte per la fabbricazione e l’assemblaggio. La metodologia collega l’analisi ambientale, la modellazione parametrica e la pianificazione della produzione in un unico flusso di lavoro coerente. Il processo proposto comprende quattro fasi principali: analisi climatica locale, modellazione parametrica e configurazione modulare, pianificazione della fabbricazione e dell’assemblaggio basata su BIM e DfMA, e strategie di gestione e manutenzione nel ciclo di vita. Strumenti digitali come Ladybug, EnergyPlus e Revit vengono utilizzati per collegare i dati climatici con le prestazioni edilizie e la documentazione costruttiva, garantendo precisione e coordinamento durante tutto il processo di progettazione. La linea guida è applicata al progetto Digital Revolution House (DRH) a Torino. La facciata ridisegnata integra lamelle verticali rotanti che si adattano alla posizione del sole per migliorare l’illuminazione naturale e il comfort termico. I moduli prefabbricati sono stati sviluppati secondo i principi del DfMA e gestiti tramite BIM per la fabbricazione, l’assemblaggio e la gestione a lungo termine. I risultati mostrano miglioramenti misurabili in termini di efficienza energetica, qualità della luce naturale e precisione costruttiva. In conclusione, la ricerca dimostra come l’integrazione di BIM e DfMA possa supportare lo sviluppo di facciate adattive efficienti, realizzabili e sensibili alle condizioni climatiche locali, contribuendo alla creazione di involucri edilizi più sostenibili e intelligenti.
Architecture engineering: a methodological and experimental approach : analysis and processing of excercutive and manufacturing design applied to DRH (Digital Revolution House) project, Turin, Italy
Bui, Thi Oanh
2025/2026
Abstract
This thesis proposes an integrated guideline for the design and implementation of hybrid adaptive façade systems by combining climate-responsive design, Design for Manufacture and Assembly (DfMA), and Building Information Modeling (BIM). The study addresses current challenges in the construction sector, including climate change, increasing energy performance requirements, and the demand for more efficient design and fabrication processes. It develops a practical and replicable framework that translates environmental data into modular façade solutions ready for manufacturing and assembly. The research connects environmental analysis, parametric modeling, and fabrication planning within one coherent workflow. The proposed process includes four main phases: local climate study, parametric modeling and modular configuration, BIM- and DfMA-based fabrication and assembly planning, and lifecycle and maintenance strategies. Digital tools such as Ladybug, EnergyPlus, and Revit are used to link climate data with building performance and construction documentation, ensuring precision and coordination throughout the design process. The guideline is applied to the Digital Revolution House (DRH) project in Turin, Italy. The redesigned façade integrates vertical rotating louvers that adapt to the sun’s position to improve daylight and thermal comfort. Prefabricated modules were developed using DfMA principles and managed through BIM for fabrication, assembly, and long-term operation. The results demonstrate measurable improvements in energy efficiency, daylight quality, and construction accuracy. Overall, the study shows how the integration of BIM and DfMA can support the development of adaptive façade systems that are efficient, buildable, and responsive to local climate conditions, contributing to more sustainable and intelligent building envelopes.| File | Dimensione | Formato | |
|---|---|---|---|
|
12_2025_Bui_Panels.pdf
accessibile in internet solo dagli utenti autorizzati
Dimensione
99.53 MB
Formato
Adobe PDF
|
99.53 MB | Adobe PDF | Visualizza/Apri |
|
2025_12_Bui_Booklet.pdf
accessibile in internet solo dagli utenti autorizzati
Dimensione
143.97 MB
Formato
Adobe PDF
|
143.97 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/245838