The growing penetration of Distributed Energy Resources (DERs) in Medium-Voltage (MV) networks challenges the ability of traditional voltage regulation systems to maintain power quality within standard limits. The variability of power injections and bidirectional flows requires redefining coordination strategies between On Load Tap Changers (OLTCs) and reactive power control schemes. In this framework, the thesis investigates advanced voltage-regulation architectures aimed at improving voltage quality and reducing mechanical stress on regulating equipment. The study focuses on the combined operation of three regulation resources: the OLTC at the primary substation (PS), the introduction of OLTCs at secondary substations (SS), an innovative solution not yet widely implemented, and the distributed Q(V) control in MV generators. The adopted reference network is a real multi-feeder distribution system, in which time-domain RMS simulations were performed using the DigSilent PowerFactory environment. Several regulation scenarios were compared, including individual and coordinated configurations, to assess their effectiveness in mitigating voltage deviations, reducing tap operations, and improving stability in both ordinary operation and during externally induced voltage disturbances. Results show that Q(V) regulation provides tangible benefits by mitigating daytime overvoltages and reducing tap operations, particularly at SSs. The coordinated operation of OLTCs at both the primary and secondary substations enhances voltage uniformity across all feeders under normal operating conditions. The dynamic response to externally induced voltage disturbances highlights the importance of tuning regulators’ parameters such as deadband, time delays, and droop slope to ensure stable coordination among the regulation layers, preventing unwanted interactions. Overall, the combined use of centralized and distributed voltage regulation represents a technically viable and efficient strategy for modern distribution systems with high DER penetration, improving both network reliability and asset longevity.
La crescente diffusione delle risorse energetiche distribuite nelle reti di media tensione mette alla prova la capacità dei tradizionali sistemi di regolazione della tensione di garantire la qualità del servizio entro i limiti normativi. La variabilità delle immissioni di potenza e dei flussi bidirezionali richiede una revisione delle strategie di coordinamento tra i variatori sotto carico (OLTC) e i sistemi di controllo della potenza reattiva. In questo contesto, la tesi analizza architetture avanzate di regolazione volte a migliorare il profilo di tensione e a ridurre lo stress meccanico sui dispositivi di controllo. Lo studio analizza il funzionamento combinato di tre risorse di regolazione: l’OLTC della cabina primaria, l’introduzione di OLTC nelle cabine secondarie, una soluzione innovativa non ancora diffusa su larga scala, e il controllo distribuito Q(V) dei generatori in media tensione. La rete di riferimento è un sistema reale a più dorsali, su cui sono state condotte simulazioni RMS nel dominio del tempo tramite il software DigSilent PowerFactory. Sono stati confrontati diversi scenari di regolazione, comprendenti configurazioni indipendenti e coordinate, per valutarne l’efficacia nella mitigazione delle deviazioni di tensione, nella riduzione delle manovre dei commutatori e nel miglioramento della stabilità, sia in condizioni ordinarie sia in presenza di disturbi di tensione esterni. I risultati mostrano che la regolazione Q(V) riduce le sovratensioni diurne e le manovre dei commutatori, soprattutto nelle cabine secondarie. Il coordinamento tra gli OLTC di cabina primaria e secondaria consente di ottenere profili di tensione più omogenei lungo le dorsali della rete. La risposta dinamica a disturbi esterni evidenzia l’importanza della corretta taratura dei parametri di controllo per garantire un coordinamento stabile tra i diversi livelli di regolazione ed evitare interazioni indesiderate. Nel complesso, l’impiego coordinato di strategie di regolazione centralizzate e distribuite rappresenta una soluzione tecnicamente valida ed efficiente per le moderne reti di distribuzione con elevata penetrazione di DERs, migliorando l’affidabilità del sistema e la vita utile delle apparecchiature.
Multi-level voltage control in modern distribution networks: a simulation-based dynamic analysis in the RMS domain
Dotti, Andrea
2024/2025
Abstract
The growing penetration of Distributed Energy Resources (DERs) in Medium-Voltage (MV) networks challenges the ability of traditional voltage regulation systems to maintain power quality within standard limits. The variability of power injections and bidirectional flows requires redefining coordination strategies between On Load Tap Changers (OLTCs) and reactive power control schemes. In this framework, the thesis investigates advanced voltage-regulation architectures aimed at improving voltage quality and reducing mechanical stress on regulating equipment. The study focuses on the combined operation of three regulation resources: the OLTC at the primary substation (PS), the introduction of OLTCs at secondary substations (SS), an innovative solution not yet widely implemented, and the distributed Q(V) control in MV generators. The adopted reference network is a real multi-feeder distribution system, in which time-domain RMS simulations were performed using the DigSilent PowerFactory environment. Several regulation scenarios were compared, including individual and coordinated configurations, to assess their effectiveness in mitigating voltage deviations, reducing tap operations, and improving stability in both ordinary operation and during externally induced voltage disturbances. Results show that Q(V) regulation provides tangible benefits by mitigating daytime overvoltages and reducing tap operations, particularly at SSs. The coordinated operation of OLTCs at both the primary and secondary substations enhances voltage uniformity across all feeders under normal operating conditions. The dynamic response to externally induced voltage disturbances highlights the importance of tuning regulators’ parameters such as deadband, time delays, and droop slope to ensure stable coordination among the regulation layers, preventing unwanted interactions. Overall, the combined use of centralized and distributed voltage regulation represents a technically viable and efficient strategy for modern distribution systems with high DER penetration, improving both network reliability and asset longevity.| File | Dimensione | Formato | |
|---|---|---|---|
|
2025_12_Dotti_Executive Summary.pdf
non accessibile
Descrizione: Executive Summary
Dimensione
891.61 kB
Formato
Adobe PDF
|
891.61 kB | Adobe PDF | Visualizza/Apri |
|
2025_12_Dotti_Tesi.pdf
non accessibile
Descrizione: Tesi
Dimensione
6.85 MB
Formato
Adobe PDF
|
6.85 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/246082