This work introduces a physically based analytical model, referred to as PolDEx (Polynomial–Exponential model), for estimating atmospheric path attenuation in the microwave and millimeter-wave frequency ranges. The model integrates polynomial and exponential terms to characterize the nonlinear relationship between brightness temperature and specific attenuation. Model parameters are optimized through a Genetic Algorithm (GA) to minimize the root-mean-square error (RMSE) between measured and modeled attenuation, ensuring improved adaptability to varying atmospheric conditions. The model is developed using long-term Sun-Tracking Microwave Radiometer (ST-MWR) measurements acquired in Rome and subsequently validated with independent data from Milan at 23.8, 31.4, 72.5, and 82.5 GHz. The GA-based optimization significantly enhances model accuracy, particularly under rain-affected conditions, yielding RMSE reductions compared with the initial parameter configuration. The proposed PolDEx model provides a compact yet flexible analytical framework capable of reproducing complex attenuation behavior across multiple frequency bands. Its physically interpretable formulation and optimization-based calibration enable accurate and real-time prediction of atmospheric attenuation, supporting link-budget analysis, system design, and performance assessment for high-frequency communication and remote sensing applications.

Questo lavoro presenta un modello analitico a base fisica, denominato PolDEx (modello Polinomiale–Esponenziale), per la stima dell’attenuazione atmosferica nei range di frequenza microonde e onde millimetriche. Il modello integra termini polinomiali ed esponenziali per caratterizzare la relazione non lineare tra la temperatura di brillanza e l’attenuazione specifica. I parametri del modello sono ottimizzati mediante un Algoritmo Genetico (GA) al fine di minimizzare l’errore quadratico medio (RMSE) tra l’attenuazione misurata e quella modellata, garantendo una maggiore adattabilità alle varie condizioni atmosferiche. Il modello è stato sviluppato utilizzando misure a lungo termine ottenute con un Radiometro a Microonde Sun-Tracking (ST-MWR) acquisito a Roma e successivamente validato con dati indipendenti raccolti a Milano a 23,8, 31,4, 72,5 e 82,5 GHz. L’ottimizzazione basata su GA migliora in modo significativo la precisione del modello, in particolare in condizioni di pioggia, riducendo il RMSE rispetto alla configurazione iniziale dei parametri. Il modello PolDEx proposto fornisce un quadro analitico compatto ma flessibile, capace di riprodurre comportamenti complessi di attenuazione su più bande di frequenza. La sua formulazione fisicamente interpretabile e la calibrazione basata sull’ottimizzazione consentono una previsione accurata e in tempo reale dell’attenuazione atmosferica, supportando l’analisi del link budget, la progettazione dei sistemi e la valutazione delle prestazioni per applicazioni di comunicazione ad alta frequenza e telerilevamento.

Tropospheric attenuation prediction from ground based radiometry

Oikawa, Shoji
2024/2025

Abstract

This work introduces a physically based analytical model, referred to as PolDEx (Polynomial–Exponential model), for estimating atmospheric path attenuation in the microwave and millimeter-wave frequency ranges. The model integrates polynomial and exponential terms to characterize the nonlinear relationship between brightness temperature and specific attenuation. Model parameters are optimized through a Genetic Algorithm (GA) to minimize the root-mean-square error (RMSE) between measured and modeled attenuation, ensuring improved adaptability to varying atmospheric conditions. The model is developed using long-term Sun-Tracking Microwave Radiometer (ST-MWR) measurements acquired in Rome and subsequently validated with independent data from Milan at 23.8, 31.4, 72.5, and 82.5 GHz. The GA-based optimization significantly enhances model accuracy, particularly under rain-affected conditions, yielding RMSE reductions compared with the initial parameter configuration. The proposed PolDEx model provides a compact yet flexible analytical framework capable of reproducing complex attenuation behavior across multiple frequency bands. Its physically interpretable formulation and optimization-based calibration enable accurate and real-time prediction of atmospheric attenuation, supporting link-budget analysis, system design, and performance assessment for high-frequency communication and remote sensing applications.
BISCARINI, MARIANNA
ING - Scuola di Ingegneria Industriale e dell'Informazione
10-dic-2025
2024/2025
Questo lavoro presenta un modello analitico a base fisica, denominato PolDEx (modello Polinomiale–Esponenziale), per la stima dell’attenuazione atmosferica nei range di frequenza microonde e onde millimetriche. Il modello integra termini polinomiali ed esponenziali per caratterizzare la relazione non lineare tra la temperatura di brillanza e l’attenuazione specifica. I parametri del modello sono ottimizzati mediante un Algoritmo Genetico (GA) al fine di minimizzare l’errore quadratico medio (RMSE) tra l’attenuazione misurata e quella modellata, garantendo una maggiore adattabilità alle varie condizioni atmosferiche. Il modello è stato sviluppato utilizzando misure a lungo termine ottenute con un Radiometro a Microonde Sun-Tracking (ST-MWR) acquisito a Roma e successivamente validato con dati indipendenti raccolti a Milano a 23,8, 31,4, 72,5 e 82,5 GHz. L’ottimizzazione basata su GA migliora in modo significativo la precisione del modello, in particolare in condizioni di pioggia, riducendo il RMSE rispetto alla configurazione iniziale dei parametri. Il modello PolDEx proposto fornisce un quadro analitico compatto ma flessibile, capace di riprodurre comportamenti complessi di attenuazione su più bande di frequenza. La sua formulazione fisicamente interpretabile e la calibrazione basata sull’ottimizzazione consentono una previsione accurata e in tempo reale dell’attenuazione atmosferica, supportando l’analisi del link budget, la progettazione dei sistemi e la valutazione delle prestazioni per applicazioni di comunicazione ad alta frequenza e telerilevamento.
File allegati
File Dimensione Formato  
2025_12_ShojiOikawa_Thesis_01.pdf

accessibile in internet per tutti

Descrizione: Main Thesis PDF
Dimensione 14.11 MB
Formato Adobe PDF
14.11 MB Adobe PDF Visualizza/Apri
2025_12_ShojiOikawa_Executive+Summary_02.pdf

accessibile in internet per tutti

Descrizione: Executive Summary
Dimensione 2.13 MB
Formato Adobe PDF
2.13 MB Adobe PDF Visualizza/Apri

I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10589/246117