The AEgIS experiment at CERN aims to test fundamental physics laws by measuring the gravitational acceleration of antihydrogen atoms, thereby probing the Weak Equivalence Principle and Charge, Parity, Time reversal symmetry in the antimatter domain. Within this framework, this thesis contributes to two complementary research activities of the experiment: the efficiency characterization of SARA (Scintillator Assemblies to Reveal Annihilations), a plastic scintillator-based detection system equipped with SiPMs, and the development of a superconducting octupole magnet for antihydrogen confinement. In the efficiency tests, a dedicated setup based on double and triple coincidence techniques with cosmic muons has been developed to measure the detection efficiency of each scintillator after the integration of SiPM-based electronics and external wrapping optimization. This approach provides a validated performance benchmark for the detector modules to be integrated into the AEgIS apparatus at CERN, yielding results consistent with the expected behavior of plastic scintillators affected by aging effects. Additional angular dependence studies and numerical model fitting have been performed to confirm the consistency of experimental results with the theoretical predictions of coincidence behavior. In parallel, a preliminary conceptual design of a NbTi-based superconducting octupole magnetic has been developed to enhance the AEgIS trapping capabilities, meeting the requirements for the desired configuration and magnetic field strength while minimizing the number of current leads. The magnet geometry and field distribution have been investigated through FEMM finite element simulations and will be validated experimentally using a copper prototype to demonstrate the feasibility of the proposed design approach. By combining experimental validation and numerical modeling, this work provides the technical groundwork for the performance characterization of AEgIS scintillators and for the future realization of superconducting octupole prototypes.
L’esperimento AEgIS al CERN ha l’obiettivo di testare le leggi fondamentali della fisica misurando l’accelerazione gravitazionale degli atomi di anti-idrogeno, indagando così il Principio di Equivalenza Debole e la simmetria Carica, Parità, Tempo nell’ambito dell’antimateria. In questo contesto, la presente tesi contribuisce a due linee di ricerca complementari dell’esperimento: la caratterizzazione dell’efficienza di SARA (Scintillator Assemblies to Reveal Annihilations), un sistema di rivelazione basato su scintillatori plastici dotati di SiPM, e lo sviluppo di un magnete ottupolare superconduttore per il confinamento dell’anti-idrogeno. Per lo studio dell’efficienza è stato realizzato un setup dedicato basato su tecniche di coincidenza doppia e tripla con muoni cosmici, volto a misurare l’efficienza di ciascuno scintillatore dopo l’integrazione dell’elettronica a SiPM e l’ottimizzazione del rivestimento esterno. Tale approccio fornisce un riferimento prestazionale validato per gli scintillatori destinati ad essere integrati nell’apparato di AEgIS al CERN, mostrando risultati coerenti con il comportamento atteso degli scintillatori plastici soggetti a effetti di degradazione nel tempo. Studi aggiuntivi sulla dipendenza angolare delle misure e sulla realizzazione di modelli di fitting numerico sono stati condotti per confermare la coerenza dei risultati sperimentali con le previsioni teoriche sul comportamento delle coincidenze. Parallelamente è stato sviluppato un design concettuale preliminare di un magnete ottupolare superconduttore in NbTi, finalizzato a potenziare le capacità di confinamento dell’esperimento AEgIS, garantendo la configurazione e l’intensità di campo desiderate minimizzando il numero di cavi richiesto. La geometria del magnete e la distribuzione delle linee di campo sono state analizzate tramite simulazioni agli elementi finiti con FEMM e saranno validate sperimentalmente attraverso misure su un prototipo in rame, al fine di dimostrare la fattibilità dell’approccio progettuale proposto. Combinando validazione sperimentale e modellizzazione numerica, la tesi proposta fornisce le basi tecniche per la caratterizzazione delle performance degli scintillatori di AEgIS e per la realizzazione di prototipi di magneti ottupolari superconduttori.
Characterization of SARA scintillators efficiency and octupole magnet design for the AEgIS experiment at CERN
MARZO, VERONICA
2024/2025
Abstract
The AEgIS experiment at CERN aims to test fundamental physics laws by measuring the gravitational acceleration of antihydrogen atoms, thereby probing the Weak Equivalence Principle and Charge, Parity, Time reversal symmetry in the antimatter domain. Within this framework, this thesis contributes to two complementary research activities of the experiment: the efficiency characterization of SARA (Scintillator Assemblies to Reveal Annihilations), a plastic scintillator-based detection system equipped with SiPMs, and the development of a superconducting octupole magnet for antihydrogen confinement. In the efficiency tests, a dedicated setup based on double and triple coincidence techniques with cosmic muons has been developed to measure the detection efficiency of each scintillator after the integration of SiPM-based electronics and external wrapping optimization. This approach provides a validated performance benchmark for the detector modules to be integrated into the AEgIS apparatus at CERN, yielding results consistent with the expected behavior of plastic scintillators affected by aging effects. Additional angular dependence studies and numerical model fitting have been performed to confirm the consistency of experimental results with the theoretical predictions of coincidence behavior. In parallel, a preliminary conceptual design of a NbTi-based superconducting octupole magnetic has been developed to enhance the AEgIS trapping capabilities, meeting the requirements for the desired configuration and magnetic field strength while minimizing the number of current leads. The magnet geometry and field distribution have been investigated through FEMM finite element simulations and will be validated experimentally using a copper prototype to demonstrate the feasibility of the proposed design approach. By combining experimental validation and numerical modeling, this work provides the technical groundwork for the performance characterization of AEgIS scintillators and for the future realization of superconducting octupole prototypes.| File | Dimensione | Formato | |
|---|---|---|---|
|
2025_12_Marzo_Thesis_01.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Testo della tesi
Dimensione
51.59 MB
Formato
Adobe PDF
|
51.59 MB | Adobe PDF | Visualizza/Apri |
|
2025_12_Marzo_Executive_Summary_02.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Executive Summary
Dimensione
3.91 MB
Formato
Adobe PDF
|
3.91 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/246403