Ovarian cancer remains the deadliest gynecologic malignancy, primarily due to late diagnosis, high recurrence rates and rapid development of chemoresistance. Traditional two-dimensional (2D) culture systems fail to reproduce the structural and biochemical complexity of the tumor microenvironment, while three-dimensional (3D) scaffold-based models enable a more faithful replication of in vivo conditions, allowing investigation of cell–matrix interactions and tumor plasticity. This study aimed to develop and characterize scaffold-supported 3D ovarian cancer models fabricated by Two-Photon Polymerization (TPP). Building upon previous work, the experimental workflow was divided into two complementary parts: 1. Part I – Validation of TPP-fabricated scaffolds (PEGDA and Ormo-Clear): assessment of cell adhesion, morphology and gene expression of EMT- and stemness-related markers in two ovarian cancer cell lines (A2780 and SKOV3) cultured on scaffolds of different materials and geometries. 2. Part II – PEGDA scaffolds with tunable porosity: evaluation of spherical PEGDA scaffolds with three distinct pore sizes (65, 100 and 130 μm) to determine how microarchitectural parameters influence the transcription of genes involved in EMT, ECM remodeling, stemness and angiogenesis. qPCR analyses revealed that both scaffold material and architecture modulate gene expression in a controlled, cell line–dependent manner. PEGDA scaffolds supported epithelial-like traits in A2780 cells while maintaining transcriptional plasticity and stemness activity in SKOV3 cells. Porosity tuning further enhanced stemness-related gene expression (SOX2, NANOG and POU5F1 ) while preventing full mesenchymal transition, indicating a balanced and physiologically relevant 3D microenvironment. Overall, this work confirms the potential of PEGDA scaffolds—precisely fabricated via Two-Photon Polymerization—as biomimetic 3D culture systems that can more accurately model tumor behavior and serve as versatile platforms for studying ovarian cancer progression and therapeutic response.
Il carcinoma ovarico rappresenta la neoplasia ginecologica a più elevata mortalità, a causa della diagnosi tardiva, dell’elevato tasso di recidiva e dello sviluppo rapido di chemioreresistenza. I tradizionali modelli bidimensionali (2D) non riproducono la complessità strutturale e biochimica del microambiente tumorale, mentre i modelli tridimensionali (3D) basati su scaffold consentono una rappresentazione più fedele delle condizioni in vivo, permettendo lo studio delle interazioni cellula–matrice e dei meccanismi di plasticità tumorale. La presente tesi ha avuto l’obiettivo di sviluppare e caratterizzare modelli tridimensionali in vitro di carcinoma ovarico basati su scaffold polimerici realizzati mediante polimerizzazione a due fotoni (Two-Photon Polymerization, TPP). Sulla base di studi precedenti, il lavoro sperimentale è stato articolato in due fasi complementari: 1. Parte I – Validazione di scaffold TPP in PEGDA e OrmoClear: valutazione dell’influenza del materiale (PEGDA vs OrmoClear) e della geometria (sferica vs cubica) sull’adesione cellulare, la morfologia e l’espressione genica di marcatori legati alla transizione epitelio–mesenchimale (EMT) e alla staminalità nelle linee cellulari di carcinoma ovarico A2780 e SKOV3. 2. Parte II – Scaffold in PEGDA con porosità modulabile: analisi dell’effetto di tre diverse dimensioni di pori (65, 100 e 130 μm) sull’espressione di geni coinvolti in EMT, rimodellamento della matrice extracellulare (ECM), staminalità e angiogenesi. Le analisi di qPCR hanno mostrato che sia il materiale sia la microarchitettura degli scaffold influenzano in modo controllato e specifico per linea cellulare l’espressione genica. Gli scaffold in PEGDA hanno mantenuto un fenotipo epiteliale nelle cellule A2780, mentre hanno favorito una plasticità trascrizionale e una maggiore attività di geni di staminalità nelle cellule SKOV3. L’aumento della porosità ha ulteriormente potenziato l’espressione di geni associati alla staminalità (SOX2, NANOG e POU5F1), prevenendo al contempo una completa transizione mesenchimale, a conferma di un microambiente 3D più bilanciato e fisiologicamente rilevante. Complessivamente, i risultati confermano il potenziale degli scaffold in PEGDA, realizzati con elevata precisione mediante Two-Photon Polymerization, come piattaforme biomimetiche 3D in grado di riprodurre in modo più realistico il comportamento tumorale e di supportare lo sviluppo di modelli predittivi per lo studio della progressione del carcinoma ovarico e della risposta terapeutica.
Gene expression profiling in 3D ovarian cancer cultures grown on scaffold fabricated by two-photon polymerization with different geometries and pore sizes
Giubilei, Asia
2024/2025
Abstract
Ovarian cancer remains the deadliest gynecologic malignancy, primarily due to late diagnosis, high recurrence rates and rapid development of chemoresistance. Traditional two-dimensional (2D) culture systems fail to reproduce the structural and biochemical complexity of the tumor microenvironment, while three-dimensional (3D) scaffold-based models enable a more faithful replication of in vivo conditions, allowing investigation of cell–matrix interactions and tumor plasticity. This study aimed to develop and characterize scaffold-supported 3D ovarian cancer models fabricated by Two-Photon Polymerization (TPP). Building upon previous work, the experimental workflow was divided into two complementary parts: 1. Part I – Validation of TPP-fabricated scaffolds (PEGDA and Ormo-Clear): assessment of cell adhesion, morphology and gene expression of EMT- and stemness-related markers in two ovarian cancer cell lines (A2780 and SKOV3) cultured on scaffolds of different materials and geometries. 2. Part II – PEGDA scaffolds with tunable porosity: evaluation of spherical PEGDA scaffolds with three distinct pore sizes (65, 100 and 130 μm) to determine how microarchitectural parameters influence the transcription of genes involved in EMT, ECM remodeling, stemness and angiogenesis. qPCR analyses revealed that both scaffold material and architecture modulate gene expression in a controlled, cell line–dependent manner. PEGDA scaffolds supported epithelial-like traits in A2780 cells while maintaining transcriptional plasticity and stemness activity in SKOV3 cells. Porosity tuning further enhanced stemness-related gene expression (SOX2, NANOG and POU5F1 ) while preventing full mesenchymal transition, indicating a balanced and physiologically relevant 3D microenvironment. Overall, this work confirms the potential of PEGDA scaffolds—precisely fabricated via Two-Photon Polymerization—as biomimetic 3D culture systems that can more accurately model tumor behavior and serve as versatile platforms for studying ovarian cancer progression and therapeutic response.| File | Dimensione | Formato | |
|---|---|---|---|
|
2025_12_Giubilei.pdf
accessibile in internet solo dagli utenti autorizzati
Dimensione
21.21 MB
Formato
Adobe PDF
|
21.21 MB | Adobe PDF | Visualizza/Apri |
|
2025_12_Executive_Summary_Giubilei.pdf
accessibile in internet solo dagli utenti autorizzati
Dimensione
5.54 MB
Formato
Adobe PDF
|
5.54 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/246407